NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON F/G 13/13 NATIONAL DAM SAFETY PROGRAM. JOHNSON LAKE DAM (NJ00499), PASSAI--ETC(U) JAM 80 W A GUINAN DACW61-79-C-0011 AD-A087 322 UNCLASSIFIED NL LOF | AP 4 25K 80

ADA 087322

PASSAIC RIVER BASIN
TRIBUTARY TO LUBBERS RUN BROOK
SUSSEX COUNTY
NEW JERSEY

JOHNSON LAKE DAM NJ 00499

PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

ORIGINAL CONTAINS COLOR PLATES: ALL DDC REPRODUCTIONS WILL BE IN BLACK AND THEITE.

DEPARTMENT OF THE ARMY

Philadelphia District
Corps of Engineers
Philadelphia, Pennsylvaniaquality Practication.
THIS DOCTOR TO DESCONTAINED A
THE COPY HORIZONT TO DESCONTAINED A
STONIFICANT TO THE OF PAGES WHICH DO NOT
REPRODUCE TO TOTAL.

APPROVITUARY 1980ELEASE;

DISTRIBUTION ON EMAILED

80 7 30 02

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 1. REPORT NUMBER NJ00499 TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitio) ese I Inspection Report EINAL VEDT National Dam Safety Program. Johnson Lake Dam (NJ00499), Passaic River Bas MING.ORG. REPORT NUMBER Jubbe +5 DACW61-79-C, Phase WARREN A. GUINAN PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Anderson-Nichols & Company, Inc. 6 London Road New Concord, N.M. 03301 1. CONTROLLING OFFICE NAME AND ADDRESS NJ Department of Environmental Protection Division of Water Resources Janu P.O. Box CN029 82 Trenton, NJ 08625 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) U.S. Army Engineer District, Philadelphia Custom House, 2d & Chestnut Streets Unclassified Philadelphia, PA 19106 15a, DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Repor Approved for public release; distribution unlimited, 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report) IR. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dams Embankments Visual Inspection Structural analyses National Dam Safety Program Safety Johnson Lake Dam 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report cites results of a technical investigation as to the dam's adequacy, The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.

DEPARTMENT OF THE ARMY PHILADELPHIA DISTRICT, CORPS OF ENGINEERS CUSTOM HOUSE—2 D & CHESTNUT STREETS PHILADELPHIA, PENNSYLVANIA 19106

Honorable Brendan T. Byrne Governor of New Jersey Trenton, New Jersey 08621

28 JUL 1980

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Johnson Lake Dam in Sussex County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92~367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Johnson Lake Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to seven percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

- a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner, using more sophisticated methods, procedures, and studies within six months from the date of approval of this report. Within three months of the consultant's findings, remedial measures to ensure spillway adequacy should be initiated.
- b. Within six months from date of approval of this report, the following engineering studies and analyses should be initiated:
- (1) Design and oversee procedures for repair of erosion of the earth berm on the downstream side of the concrete dam and on the banks of the discharge channel immediately downstream of the stoplog spillway.
- (2) Design and oversee the repair of the deteriorated portion of the concrete dam on either side of the stoplog facility.
- (3) Design and oversee procedures for making the soil abutments resistant to erosion in the event of overtopping.

NAPEN-N Honorable Brendan T. Byrne

- (4) Design and oversee procedures for removing the trees on the right abutment.
- (5) Determine the configuration and condition of the concrete and earth sections of the dam and its foundation for the purpose of evaluating the stability of the structure.
- (6) Repair eroded and spalled areas of the joint 10 feet to the right of the stoplog section, and monitor lateral movement. If movement progresses, design and implement remedial measures.
- c. Within six months from the date of approval of this report, the following actions should be initiated:
- (1) Clear brush and trees from the banks of the discharge channel between the dam and the highway culvert immediately downstream of the dam.
- (2) Establish a surveillance program for use during and immediately after periods of heavy rainfall, and also a warning program to follow in case of emergency conditions.
- (3) Restore or replace the gate operating mechanism for the low-level outlet.
- d. Within one year from the date of approval of this report, the owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Courter of the Thirteenth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

Accession For

NTIS GRA&I
DDC TAB
Unannounced
Justific tien

By

The special

2

NAPEN-N Honorable Brendan T. Byrne

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,

l Incl As stated JAMES G. TON Colonel, Corps of Engineers District Engineer

Ames The

Copies furnished: Mr. Dirk C. Hofman, P.E., Deputy Director Division of Water Resources N.J. Dept. of Environmental Protection P.O. Box CN029 Trenton, NJ 08625

Mr. John O'Dowd, Acting Chief Bureau of Flood Plain Management Division of Water Resources N.J. Dept. of Environmental Protection P.O. Box CN029 Trenton, NJ 08625

JOHNSON LAKE DAM (NJ00499)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 5 November 1979 by Anderson-Nichols & Co., Inc. under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

Johnson Lake Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to seven percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood.) To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

- a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner, using more sophisticated methods, procedures, and studies within six months from the date of approval of this report. Within three months of the consultant's findings, remedial measures to ensure spillway adequacy should be initiated.
- b. Within six months from date of approval of this report, the following engineering studies and analyses should be initiated:
- (1) Design and oversee procedures for repair of erosion of the earth berm on the downstream side of the concrete dam and on the banks of the discharge channel immediately downstream of the stoplog spillway.
- (2) Design and oversee the repair of the deteriorated portion of the concrete dam on either side of the stoplog facility.
- (3) Design and oversee procedures for making the soil abutments resistant to erosion in the event of overtopping.
- (4) Design and oversee procedures for removing the trees on the right abutment.
- (5) Determine the configuration and condition of the concrete and earth sections of the dam and its foundation for the purpose of evaluating the stability of the structure.
- (6) Repair eroded and spalled areas of the joint 10 feet to the right of the stoplog section, and monitor lateral movement. If movement progresses, design and implement remedial measures.

- c. Within six months from the date of approval of this report, the following actions should be initiated:
- (1) Clear brush and trees from the banks of the discharge channel between the dam and the highway culvert immediately downstream of the dam.
- (2) Establish a surveillance program for use during and immediately after periods of heavy rainfall, and also a warning program to follow in case of emergency conditions.
- (3) Restore or replace the gate operating mechanism for the low-level outlet.
- d. Within one year from the date of approval of this report, the owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

APPROVED: FIXES G. FON

Colonel, Corps of Engineers

District Engineer

DATE: 24 Jun 1980

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

Name of Dam: Johnson Lake Dam Identification No.: FED ID No. NJ00499

State Located: New Jersey County Located: Sussex

Stream: Tributary to Lubbers Run

River Basin: Passaic

Date of Inspection: November 5, 1979

ASSESSMENT OF GENERAL CONDITIONS

Johnson Lake Dam is 36 years old and in fair overall condition. It is small in size and is recommended to be downgraded to Significant Hazard. The crest of the dam is of concrete which was casted irregularly and is very rough. Large trees are located on the right (west) abutment. The joint in the concrete wall on the right side of the stoplogs is eroded and some movement was observed. The joint located 10 feet to the right of the stoplog section is eroded and spalled and there is indication of some lateral movement. Erosion of the earth berm has occurred on the downstream side of the concrete dam. The downstream face of the dam is badly spalled at the base adjacent to the stoplog section and the reinforcing steel is exposed on the right side of the stoplogs. The downstream concrete discharge chute is surface eroded. Brush and a few trees are growing in the downstream channel. The spillway can pass approximately 6 percent of the selected & PMF SDF or 3 percent of the PMF and is inadequate.

It is recommended that the owner retain the services of a professional engineer, qualified in the design and construction of dams, to accomplish the following in the future: design and oversee procedures for repair of erosion of the earth berm on the downstream face of the concrete dam and on banks of the discharge channel immediately downstream of the stoplogs; design and oversee the repair of the deteriorated portions of the concrete dam on either side of the stoplog section; repair eroded and spalled areas of the joints located 10' to the right of the stoplog section and monitor lateral movement. If movement progresses, design and implement remedial measures; design and oversee procedures for making the soil abutments resistant to erosion in the event of overtopping; design and oversee procedures for removing the trees and their root systems on the right abutment; and conduct a more detailed hydrologic and hydraulic analysis of the spillway to determine the extent and type of remedial measures necessary.

It is further recommended that the owner accomplish the following tasks as a part of operating and maintenance procedures: in the near future, clear brush and trees from the banks of the discharge channel between the dam and the highway culvert immediately downstream of the dam; establish a surveillance program for use during

and immediately after periods of heavy rainfall, and also a warning program to follow in case of emergency; and restore or replace the gate operating mechanism for the low-level outlet. Within one year from the date of approval of this report, the owner should develop written operating procedures and a periodic maintenance plan to insure the safety of the dam.

ANDERSON-NICHOLS & COMPANY, INC.

Warren A. Guinan, P.E.

Project Manager

New Jersey No. 16848

CONTENTS

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY REPORT

JOHNSON LAKE DAM FED ID NO. NJ00499

The second of the second secon

SECTION 1	PROJECT INFORMATION	Page
	1.1 General 1.2 Project Description 1.3 Pertinent Data	1 1 2
SECTION 2	ENGINEERING DATA	-
	2.1 Design 2.2 Construction 2.3 Operation 2.4 Evaluation	5 5 5 5
SECTION 3	VISUAL INSPECTION	6
SECTION 4	OPERATIONAL PROCEDURES	
	 4.1 Procedures 4.2 Maintenance of Dam 4.3 Maintenance of Operating Facilities 4.4 Warning System 4.5 Evaluation of Operational Adequacy 	7 7 7 7 7
SECTION 5	HYDRAULIC/HYDROLOGIC	8
SECTION 6	STRUCTURAL STABILITY	9
SECTION 7	ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURE	ES
	7.1 Assessment 7.2 Recommendations/Remedial Measures	10 10
FIGURES	1. Essential Project Features	
	2. Regional Vicinity Map	
APPENDICES	1. Check List Visual Inspection	
	2. Photographs	
	3. Hydrologic Computations	
	4. References	

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY INSPECTION PROGRAM JOHNSON LAKE DAM FED ID NO. NJ00499

SECTION 1 PROJECT INFORMATION

1.1 General

- a. Authority. Authority to perform the Phase I Safety Inspection of Johnson Lake Dam was received from the State of New Jersey, Department of Environmental Protection, Division of Water Resources by letter dated 26 October 1979 under Contract FPM No. 39, dated 28 June 1979. This authority was given pursuant to the National Dam Inspection Act, Public Law 92-367 and by agreement between the State and the U.S. Army Engineers District, Philadelphia. The inspection discussed herein was performed by Anderson-Nichols & Company, Inc. on 5 November 1979.
- b. <u>Purpose</u>. The purpose of the Phase I Investigation is to develop an assessment of the general conditions with respect to safety of Johnson Lake Dam and appurtenances based upon available data and visual inspection, and determine any need for emergency measures and conclude if additional studies, investigations, and analyses are necessary and warranted.

1.2 Project Description

- a. Description of Dam and Appurtenances. Johnson Lake Dam is a 42-foot long concrete and earth embankment dam with a concrete core and a hydraulic height (also structural height) of 11.3 feet. The downstream face is of concrete and earth with a 3H:1V slope. A 4-foot long stoplog principal spillway is located on the southeastern (left) part of the dam. The wooden stoplogs are 2 inches thick and total 3.5 feet in height. The stoplogs are held in place by concrete slots. The 10-foot long concrete free overflow spillway is near the center of the dam and has a topwidth of 1 foot. A 2-foot diameter concrete pipe (low-level outlet) approximately 20 feet long is located about 7.2 feet below the principal spillway invert. Essential features of the dam are given in Figure 1.
- b. Location. Johnson Lake Dam is located in Sussex County, New Jersey on a tributary to Lubbers Run, approximately 3 miles north of Lockwood. It is at north latitude 40° 57.6' and west longitude 74° 43.6' A location map is given in Figure 2.
- c. Size Classification. Johnson Lake Dam is classified as being "small" on the basis of storage at the dam crest of 215 acrefeet, which is less than 1000 acre-feet but more than 50 acre-feet,

and on the basis of its height of 11.3 feet, which is less than 40 feet, in accordance with criteria given in the Recommended Guidelines for Safety Inspection of Dams.

- d. Hazard Classification. Visual inspection of the downstream area showed that failure of Johnson Lake Dam could possible cause damage to 3 residences; but the breach analysis contained herein indicates that only one of the 3 houses could be severely damaged by about 5.5 feet of water. Accordingly, Johnson Lake Dam is classified as Significant Hazard.
- e. Ownership. The dam is owned by Resource Recovery Associates, Totawa, New Jersey 07512. Mr. Arthur Hart was contacted for information, (201) 256-6330.
 - f. Purpose of Dam. The lake is used for recreation.
- g. Design and Construction History. Little information was found regarding the design and construction of the dam.
- h. Normal Operational Procedures. No operational procedures were revealed.
- i. Site Geology. No site specific geologic information (such as borings) was available at the time the dam was inspected. Information derived from a Geologic Map of New Jersey (Lewis and Kummel, 1912) indicates that soils within the immediate site area consist of ground moraine overlying bedrock.

Bedrock was observed in sporadic outcrops at the reservoir perimeter during inspection of this dam. The previously mentioned map indicates that bedrock in this area consists of granitoid gneiss of Precambrian age.

1.3 Pertinent Data

a. Drainage Area

Watershed - 0.6 square mile

Normal water surface - 33 acres

b. Discharge at Damsite (cfs)

Maximum flood at damsite - unknown

Ungated (total) spillway capacity at maximum pool elevation-28

Low-level outlet (if operable) - 58

c. Elevation (NGVD)

Top of dam - 837.4

Recreation pool - 837

Overflow spillway crest - 837

Principal spillway crest - 836.7 with stoplogs

- 833.2 stoplogs removed

Streambed at centerline of dam - 826.1

Maximum tailwater (estimated) - 927.3

d. Reservoir (feet)

Length of maximum pool - 2765

Length of recreational pool - 2700

e. Storage (acre-feet)

Recreation pool - 198

Design surcharge - (½ PMF) - 338

Top of dam - 215

f. Reservoir Surface (acres)

Top of dam - 37

Recreation pool - 33

Overflow spillway crest - 33

g. Dam

Type - earthfill and concrete

Length - 42 feet

Height - 11.3 feet

Topwidth - 1 foot

Side slopes - upstream unknown, downstream 3H:1V

Zoning - earthfill downstream face with concrete core which serves as upstream face

Impervious core - concrete

Cutoff - unknown

Grout curtain - unknown

h. Spillway

Type - concrete overflow spillway

Length of weir - free overflow spillway: 10 feet

- stoplog principal spillway: 4 feet

Crest elevation - free overflow spillway: 837' NGVD

- stoplog principal spillway: 836.7' NGVD

Gates - stoplogs

Upstream channel - Johnson Lake (no approach channel)

Downstream channel - tributary to Lubbers Run

i. Regulating Outlets

Type - one two-foot diameter concrete low-level outlet pipe

Length (estimated) - 20'

Access - not visible

Regulating facilities - none found

SECTION 2 ENGINEERING DATA

2.1 Design

No plans, hydraulic or hydrologic data for Johnson Lake Dam were found.

2.2 Construction

No data concerning construction of Johnson Lake Dam were found.

2.3 Operation

No engineering operational data were found.

2.4 Evaluation

- a. <u>Availability</u>. A search of the New Jersey Department of Environmental Protection files, and contact with the owner revealed no recorded information.
- b. Adequacy. Because of lack of available recorded data, evaluation of this dam was based solely on visual inspection.

SECTION 3 VISUAL INSPECTION

3.1 Findings

- a. Dam. Some erosion has taken place in the earth berm next to the downstream side of the concrete dam between the spillway and both abutments. Soil is exposed at both abutments and the ground elevation at the abutments is only slightly higher than the crest of the concrete dam. Two pine trees are growing near the right abutment. No leakage under the dam or through the abutments was observed; because water was discharging over the stoplog spillway at the time of the inspection it was not possible to examine for seepage at the spillway location.
- b. Appurtenant Structures. The concrete portion of the dam was cast irregularly and the top of the concrete wall is very rough. The steel bars embedded in the top of the wall are rusted. The downstream face of the dam is badly spalled at the base adjacent to the wooden stoplogs. Reinforcing steel is exposed on the right side of the stoplog section. The low-level outlet gate was not visible at the time of the inspection.

The joint in the concrete wall approximately 10 feet to the right of the stoplog section is eroded and spalled, some movement was observed. The downstream concrete discharge chute is surface eroded, exposing the coarse aggregate.

- c. Reservoir Area. The watershed above the reservoir is gently to steeply sloping and partly wooded. Slopes adjacent to the reservoir appear to be stable. No structures were observed close to the shore of the reservoir. Sediment has accumulated behind the dam to within one foot of the crest. No evidence of significant sedimentation other than that close to the dam was observed.
- d. <u>Downstream Channel</u>. Brush is growing on the left side and there are a few small trees on the right side of the downstream channel between the dam and the highway culvert immediately downstream of the dam. Downstream of the highway culvert, many trees overhang the channel. Macadam has been crudely placed on the right bank of the downstream channel close to the stoplog spillway apparently for the purpose of controlling erosion of the channel bank.

SECTION 4 OPERATIONAL PROCEDURES

4.1 Procedures

No formal operating procedures were found.

4.2 Maintenance of Dam

No formal maintenance procedures for the dam were found.

4.3 Maintenance of Operating Facilities

No formal maintenance procedures for the operating facilities were found.

4.4 Warning System

No description of any warning system was found.

4.5 Evaluation of Operational Adequacy

Because of the lack of operational and maintenance procedures, the remedial measures described in Section 7.2 should be implemented as prescribed.

SECTION 5 HYDROLOGIC/HYDRAULIC

5.1 Evaluation of Features

- a. Design Data. Since no data were revealed an evaluation could not be performed.
 - b. Experience Data. No experience data were found.
- c. Visual Observation. The channel immediately downstream of the dam has been paved either because of previous damage due to excessive discharge and very likely overtopping, or as a future protection measure. At the time of inspection, about one inch of water was passing over the free overflow spillway crest.
- d. Overtopping Potential. The hydraulic/hydrologic evaluation for Johnson Lake Dam is based on a Spillway Design Flood (SDF) equal to one-half the Probable Maximum Flood (PMF) in accordance with the range of floods given in the evaluation guidelines for dams classified as Significant Hazard and small in size. The PMF has been determined by application of the SCS Dimensionless Unit Hydrograph procedure to a 24-hour Probable Maximum storm of 22 inches. Hydrologic computations are given in Appendix 3. The routed half-PMF peak discharge for the subject watershed is 648 cfs.

The minimum elevation of the dam allows 0.4 feet of depth in the overflow spillway before overtopping occurs. Under this head the spillway capacity is 28 cfs, which is less than the required SDF.

Flood routing calculations indicate that Johnson Lake Dam will be overtopped for more than 14 hours to a maximum depth of 1.8 feet under half-PMF conditions. It is estimated that the spillway can only pass about 3 percent of the PMF without overtopping the dam.

Because the dam was classified as high hazard during the visual inspection the increase in downstream hazard under breach conditions was assessed. The results of this analysis indicated that only one house would be severely damaged under breach or non-breach conditions. Thus, the hazard classification was reduced from high to significant. The spillway can pass less than 50 percent of the PMF and is deemed inadequate.

e. <u>Drawdown Capability</u>. Assuming that the low-level outlet currently in place can be restored to an operable condition, it is estimated that the lake can be drained in approximately 3 days, assuming no significant inflow. This is considered adequate.

SECTION 6 STRUCTURAL STABILITY

6.1 Visual Observations

Erosion of the earth berm against the downstream side of the concrete dam, if not controlled, will reduce the stability of the dam by removal of the earth support. The soil exposed at the abutments is susceptible to erosion if the dam is overtopped, and this erosion, in turn, could result in loss of abutment support and consequent failure of the dam. If one of the trees growing on the right abutment blows over and pulls out its roots, or if one of the trees die and its roots rot, serious seepage and erosion problems may result. Significant spalling of the concrete at the base of the walls adjacent to the stoplogs could cause a release of the stoplog at the bottom of the wall and result in unplanned draining of the lake.

Based on the visual inspection alone it is not possible to determine the geometry of the concrete dam beneath the ground surface or the character of the foundation. Therefore, it is not possible to evaluate the factor of safety of the dam against sliding or overturning.

6.2 Design and Construction Data

No design or construction data pertinent to the structural stability of the dam are available.

6.3 Operating Records

No operating records pertinent to the structural stability of the dam are available.

6.4 Post-Construction Changes

No records pertinent to post-construction changes are available.

6.5 Seismic Stability

This dam is in Seismic Zone 1. According to the Recommended Guidelines, dams located in Seismic Zone 1 "may be assumed to present no hazard from earthquake provided static conditions are satisfactory and conventional safety margins exist." None of the visual observations made during the inspection are indicative of unstable slopes. However, because no data are available concerning the engineering properties of the embankment and foundation materials for this dam or of the below-ground configuration of the concrete wall in the dam, it is not possible to make an engineering evaluation of the stability of the slopes or the factor of safety under static conditions.

SECTION 7 ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment

- a. Condition. Johnson Lake Dam is of undetermined age and is in fair overall condition.
- b. Adequacy of Information. Since there is a lack of recorded information the assessment of the dam is based on the results of the visual inspection.
- c. <u>Urgency</u>. The recommendations made in 7.2 a. and 7.2 c. should be implemented by the owner as prescribed below.
- d. Necessity for Additional Data/Evaluation. The information available from the visual inspection is adequate to identify the potential problems which are listed in 7.2 a. below. These problems require the attention of a professional engineer who will have to make additional engineering studies to design or specify remedial measures to rectify the problems. If left unattended, the problems could lead to instability of the structure.

7.2 Recommendations/Remedial Measures

- a. Recommendations. The owner should retain a professional engineer qualified in the design and construction of dams to accomplish the following in the near future:
- (1) Design and oversee procedures for repair of erosion of the earth berm on the downstream side of the concrete dam and on the banks of the discharge channel immediately downstream of the stoplog spillway.
- (2) Design and oversee the repair of the deteriorated portion of the concrete dam on either side of the stoplog facility.
- (3) Design and oversee procedures for making the soil abutments resistant to erosion in the event of overtopping.
- (4) Design and oversee procedures for removing the trees and their root systems on the right abutment.
- (5) Conduct a more detailed hydrologic and hydraulic analysis of the spillway to determine the extent and type of remedial measures necessary.
- (6) Determine the configuration and condition of the concrete and earth sections of the dam, and the foundation conditions, for the purpose of evaluating the stability of the dam.

- (7) Repair eroded and spalled areas of the joint 10 feet to the right of the stoplog section, and monitor lateral movement. If movement progresses, design and implement remedial measures.
- b. Operating and Maintenance Procedures. The owner should do the following in the near future:
- (1) Clear brush and trees from the banks of the discharge channel between the dam and the highway culvert immediately downstream of the dam.
- (2) Establish a surveillance program for use during and immediately after periods of heavy rainfall, and also a warning program to follow in case of emergency conditions.
- (3) Restore or replace the gate operating mechanism for the low-level outlet.

Within one year from the date of approval of this report, the owner should develop written operating procedures and a periodic maintenance plan to insure the safety of the dam.

SPILLWAY DETAIL

SECTION B-B

APPENDIX I
VISUAL INSPECTION
CHECKLIST

JOHNSON LAKE DAM

Check List Visual Inspection Phase l

Name Dam Johnson Lake Dam	County Sussex	State N.J. Coord	Coordinators NJDEP
Date(s) Inspection Nov. 5, 1979 Weather Sunny, cool	Weather Sunny, cool	Temperature 620	
Pool Elevation at Time of Inspection 837.0 NGVD		Tailwater at Time of Inspection 827.3 NGVD	ction 827.3 NGVD
Inspection Personnel:			
Warren Guinan	Ronald Hirschfeld	schfeld	
Stephen Gilman			
Kenneth Stuart			
	Gilman/Hirschfeld	Recorder	

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SEEPAGE OR LEAKAGE	No seepage or leakage.	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Some erosion of soil from against downstream side of concrete dam near both abutments.	Eroded areas should be repaired and protected against further erosion.
DRAINS	None observed.	
WATER PASSAGES	None observed.	
FOUNDATION	Unknown. Soil exposed at both abutments. Rock exposed in right bank of reservoir immediately upstream of dam appears to be bedrock.	

CONCRETE/MASONRY DAMS

					ment
REMARKS OR RECOMMENDATIONS	Engage engineer to design and implement repairs.				Repair eroded and spalled areas. Monitor lateral movement. If movement progresses design and implement remedial measures.
OBSERVATIONS	- top of concrete eroded to expose coarse aggregate - one large spalled erosion area at downstream face adjacent to stoplog	None	- Poor - Wall thickness varies		Joint 10'. Right of stoplog is eroded and spalled. Some lateral movement observed.
VISUAL EXAMINATION OF	SURFACE CRACKS CONCRETE SURFACES	STRUCTURAL CRACKING	VERTICAL AND HORIZONTAL ALIGNMENT	MONOLITH JOINTS	CONSTRUCTION JOINTS

UNGATED SPILLWAY

THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Some reinforcing steel visible. Concrete spalled at base of wall adjacent to stoplog section. Some vertical movement observed.	Repair deteriorated concrete. Watch for changes in vertical alignment.
APPROACH CHANNEL	See gated spillway.	
1-4	•	
DISCHARGE CHANNEL	See gated spillway.	

BRIDGE AND PIERS OVER SPILLWAY

None

OUTLET WORKS

	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
	CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Not applicable	
	INTAKE STRUCTURE	Not visible	
1-5	OUTLET PIPE	- 24" RCP - only the end of the pipe is visible - fair condition	
	OUTLET CHANNEL	Trees overhanging channel. Brush on banks of channel.	Trees and brush should be cleared from banks of channel between dam and highway culvert immediately downstream. Banks should be maintained free of brush.
	EMERGENCY GATE	Not applicable	

Not applicable

GATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS REMARKS OR	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	Not visible	
APPROACII CHANNEL	None - body of lake directly upstream	
DISCHARGE CHANNEL	Concrete chute surface eroded to expose Repair e coarse aggregate.	Repair eroded concrete surfaces.
BRIDGE AND PIERS	None	
GATES AND OPERATION EQUIPMENT	None	
STOPLOGS	2" weathered wood check condition periodically, an as necessary.	Check condition of wood periodically, and replace as necessary.

INSTRUMENTATION

VISUAL EXAMINATION	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None observed.	
OBSERVATION WELLS	None observed.	
WEIRS	None observed.	
PIEZOMETERS	None observed.	
ОТНЕЯ	None observed.	

RESERVOIR

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Gently to steeply sloping. No evidence of instability observed.	
SEDIMENTATION	Sediment has accumulated to elevation of bottom of stoplog spillway and to within one foot of crest of dam between stoplog spillway and abutments.	dam

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	Brush and small trees overhanging	Remove trees and brush which may fall and block channel.
SLOPES	Moderately sloping	
APPROXIMATE NO. OF HOMES AND POPULATION	Three homes, estimated population of ten.	Only one home approximately 250' downstream will be affected by discharges from the dam.

CHECK LIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION

REMARKS	None found.	Prepared for this report.	None found.	None.	None.	None.	None revealed	
ITEM	PLAN OF DAM	REGIONAL VICINITY MAP	CONSTRUCTION HISTORY	TYPICAL SECTIONS OF DAM	HYDROLOGIC/HYDRAULIC DATA	OUTLETS - PLAN	- DETAILS	

None revealed

- DISCHARGE RATINGS

RAINFALL/RESERVOIR RECORDS

None found

REMARKS	
TEM	

DESIGN REPORTS

None Found

GEOLOGY REPORTS

None revealed

HYDROLOGY & HYDRAULICS DAM STABILITY DESIGN COMPUTATIONS

None found.

SEEPAGE STUDIES

None found MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD

None revealed

POST-CONSTRUCTION SURVEYS OF DAM

BORROW SOURCES

Unknown

	ITEM	REMARKS	
	MONITORING SERVICES	None.	
	MODIFICATIONS	None.	
	HIGH POOL RECORDS	None.	
	POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None.	
1-12	PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	None.	
	MAINTENANCE OPERATION RECORDS	None.	

REMARKS		Prepared for this report from field inspection,	None.	None.	None.
натт	SPILLWAY PLAN	SECTIONS	DETAILS	OPERATING EQUIPMENT	PLANS & DETAILS

CHECK LIST HYDROLOGIC AND HYDRAULIC DATA ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: Mountainous, heavy forest				
ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 837' NGVD (198)				
ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): Not applicable				
ELEVATION MAXIMUM DESIGN POOL: 839.2' NGVD				
ELEVATION TOP DAM: 837.4' NGVD				
CREST: Free overflow concrete capped spillway.				
a. Elevation 837' NGVD				
b. Type Concrete weir				
c. Widthl foot				
d. Length 10 feet				
e. Location Spillover Right side of the dam				
f. Number and Type of Gates Unknown				
OUTLET WORKS: Low-level outlet pipe				
a. Type 24-inch diameter concrete pipe				
b. Location Center of the dam				
c. Entrance Inverts Unknown				
d. Exit Inverts826.1' NGVD				
e. Emergency Draindown Facilities None				
HYDROMETEORLOGICAL GAGES: None				
a. Type				
b. Location				
c. Records				
MAXIMUM NON-DAMAGING DISCHARGE: 28 cfs				

APPENDIX 2 PHOTOGRAPHS

JOHNSON LAKE DAM

5 NOV 1979 View of the dam from left abutment looking northwest.

5 NOV 1979 View of the dam from right abutment looking southeast.

5 NOV 1979 View of the downstream face of the stoplog principal spillway.

5 NOV 1979
Upstream face of the dam from right abutment.

 $$\operatorname{NOV}\ 1979$$ View of the upstream reservoir from spillway crest.

5 NOV 1979 View of the downstream face of the dam looking toward right abutment.

5 NOV 1979 Erosion of concrete on downstream face of the dam next to the stoplog principal spillway.

5 NOV 1979 View of the dam from downstream channel looking upstream.

5 NOV 1979 View of the low-level outlet pipe.

5 NOV 1979 Culvert located 30 feet downstream of the dam.

 $$^{5}\,\,\mathrm{NOV}\,\,1979$$ View of the dam located 280 feet downstream of the dam.

APPENDIX 3 HYDROLOGIC COMPUTATIONS

JOHNSON LAKE DAM

JOE	BNO. 3409-14	/			Checked	700	
RES O	1 2 3 4 5 6	7 8 9 10 1	1 12 13 14 15	16 17 18 19	20 21 22 23	3 24 25 26	27 28 29 30
1	HY	DROLOGIC	COMP	LTATION	<u>15</u>		
- · · - 3							
4	NAME: C	TOHN-SON	LAKE	DAM		· · · · · · · · · · · · · · · · · · ·	
5							
6	LOCATION	: SUSSEX	COUNTY,	N.J.			
8	DA011016	00-0	0/00:	2		·	
9	DRAINAGE	HREAL	0.6 1111				
10	SURFACE	AREA (N	ORMAL POL	2): 33	AC		
1 2	f				· .	1	
13	EVALUATI	ON CRIT		· · · · · · · · · · · · · · · · · · ·		i	-
14			5/2	2E i	SMAII		
15	er under der alle der erkenteren in Nordenbergerungsperioren erkenteren. I		HAZ	ZARD:	SIGNIFICA	NT	
16		,					
17	SPILLURY	DESIGN	Flood:	BASEL	20/ 5	IZE AN	10
18	CLASS	IFICA TION	THE S	PILLWAY	DESIGN	Floor	>
19		BE THE		•			
20	_	D)-WITH-	· - 2 ·				•
22							
23			ا بست حدید ا	AND THE RESERVE OF THE PARTY OF	- · · · · · · · · · · · · · · · · · ·		
24	NOTE:	DRAWA 6 E	AREA A	VD_SURF	CE AREA	9 OF	
25		1	KE WERE				
26 27			·			·	
28							
29	ومنيحم لا الله		er – Programme a state and	to anno communication or settle and open or	erro face description of the management		
30							
31							1
32						* ***	
1			· · · · · · · · · · · · · · · · · · ·				
33							
34							
34 35							
34			3-1				

JOB NO.

SQUARES 1/4 IN, SCAL	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2	5 27 28 29 3
· · · · · · · · · · · · · · · · · · ·	TIME OF CONCENTRATION	
	3	
	OVERLAND_FLOW:	
	6	
	LENGTH OF Flow = 4300 Ft	
	8 -HEAD = 1200-837 = 363 -FT	
	$\frac{8}{10} \qquad \frac{5lOPE}{4300} = 0.084$	
***************************************	The state of the s	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	12 1- 5C5 TR # 55 METHOD	
	14 FROM FIG. 3-1, PAGE 3-2	
	15	
	16 VELOCTY = 0.72 Ft/Sec	
	17 18 - 4300 FT	, }
	$\frac{18}{19} = \frac{4300 \text{ Et}}{0.72 \text{ Et}} = 5972 \text{ Sec} = 100 \text{ My}$ $\frac{19}{20} = \frac{60.72 \text{ Et}}{500} = \frac{100 \text{ My}}{100} = 100 \text$	n
	20 500	
	21	
	23 2 Soul & WATER ROUSTING FIGURE 2014	
	2- DOIL & WITTER CONSERVATION ENGINEERING	
	25 METHOD	
	$L = 0.6 T_C$	
	1.67	
.	$L = \frac{\ell}{29} \qquad L = \frac{(5+1)}{10.5}$	
	9000 y 0.5	
	$\frac{31}{32} \qquad 5 = \frac{1000}{CN} - 10$	
	32 - CN	
	33 TAKE CN = 70 FOR WOODS	
. .		_
•	$S = \frac{7000}{70} - 10 = 4.3$	
.	l = 4300 Ft	
••	y = 8.4%	
·	3-2	1

Subject OOHNSON LAKE DAM

Sheet No. 3 of Date //- 2/- 79
Computed DAD
Checked 57

JOB NO.

Squares 1/4 in. Scal	0
-	$L = \frac{(4300)(4.3+1)^{1.67}}{9000(8.4)^{.5}} = 0.5 \text{ his}$
	9000 (8.4)
-	5 0.5 ED W
	$T_{c} = \frac{0.5}{0.6} = 0.83 \text{ hrs} = \frac{50 \text{ Mm}}{0.6}$
· · ·	7
	8
	3_KERBY METHOD
	12
	$\frac{12}{13} = 0.83 \left(\frac{NL}{\sqrt{5}} \right)^{0.467}$
	14
	L = 4300 Ft
	N = RETARDENCE ROUGHNESS COEFF. = 0.6
<u>-</u>	5 = 0.084
	18 0 83 [(0.6)(4300)
	$\frac{18}{19} \qquad \frac{1}{10} = 0.83 \left[\frac{(0.6)(4300)}{\sqrt{0.084}} \right]^{19}$
	20
	$T_{c} = 58 \text{ min}$
	23
	25 4- TEXAS HIGWAY VELOCITY DATA METHOD
	SLOPE = 8.4 %
- ·	TETIMATER VELOCITY - 3 FT/BEC
	i 1
	$T_{c} = \frac{4300 \text{ ist}}{3 \text{ Et/Sec}} = 1433 \text{ Sec} = 24 \text{ Mm}$
	31
	32 Average $T_{c} = \frac{100 + 50 + 58 + 24}{4}$
	33 AMERYE /c = 4
	34
	Average To = 58 Min
	$\frac{37}{38} \qquad LAG \ TIME = 0.6(58) = 35 \ \text{Min} = 0.58 \ \text{hrs}$
i	39

Subject JOHNSON LAKE DAM

JOB NO. 3409-14

	2	DEVELOPMENT OF RATING CURVE	
	3	1,3/2 +	. <u>.</u> .
	4	USE WEIR EQUATION Q = CLH 3/2 TO DETERMINE	
	5	THE RATING CURVE, WHERE	
	6	* C = 3.5 FOR 2" THICK STOPLOGS	
-	7	C = 2.6 FOR WOODED EMBANKMENT	
	8	C = 2.9 FOR CONCRETE SECTION	
· ·	9		
	10		
	11		
	12		
	13		
	14		
	15	1	
	16		
	17		
	18		
	19		
	20		
	21		
	22		
	23		
gage of the	24		
	25		
.	26		
	27 28		
	29		
	30		
	31	· · · · · · · · · · · · · · · · · · ·	
-	32		-
• •	33		
• •	34		
-	35		
-	36	* "C" VALUES ARE TAKEN FROM BRATER & KING "HANDBOOK	
	37	OF HYDRAULICS" PAGE 5-40, TABLE 5-3.	
-	38		
		7 1-	

Subject _____

JOB NO.

			.		a .									-
			- 		· · · · · · · · · · · · · · · · · · ·									
									·					
ED														
15	N	0-	3		9	-	0	W				•		
SOMB!	Ü			<i>N</i>		W	d	W		-				- •
	!									•				_
7	BR					37	7	297				1		
VA.	U				5		4	· //				•		
}	X.		! 			~ .								
90	LENGTH F.T		<u>-</u>	2 - 2	-7	- 40		1/						· · · -
9	<u>`</u>		i		<u>*</u>	2		0						
57	HEAD			0	0.3	=		3.0		-	-		-	-
NO								0		 -	-			
ECTION	BH		0	70	44	18	32	101			 <u></u> -			
XX	V		:		· · · · · · ·		:							
BE/C	9		0	4.	-	1	10	Ń		· ··		·		
SPILL	HEA						<i>N</i>	7						_
										.		·		_
STOPLOS)	BAN N	0		8.0	0/	40	9	134						
120	,													
PRINCIPAL	4.	0	0.3	~		0	8.7	is			-			
300	HEN		0	0.7	~	7	0	#				-	_	
					·								· · · ·	-
ELEVATION		1		837.4	÷	:7	1.	.7						
Mis	F.T.	836.	837	33,	838.1	838.7	839.5	841.2						-
FL	,	100	<i>\</i>	~			• •					·		

NO. 31,282. TO DIVISIONS FLR INCH BUTH WATE. GO AT DU CIVISIONS.

DOXIDE IN STOCK DIVICE PHON CODE & DUCK CO. HONWCOD, MASS OF

38

Subject JOHNSON LAKE DAM

JOB NO. 3409-14

SQUARES 1/4 IN. SCALI

3/0//	AGE - ELEV	177010	JE IEK MINIT	
ASSUME A	N AVERAGE	DEPTH	OF 6	
ASSUME.	A MAXIMUM	DEPTH	OF 11	
	SURFACE AREA	AUE. S.A.	NCREMENTAL STORAGE K-FT	CUMULATIVE STORAGE AC-FT
FT	77-123	TORES		
		3.3	198	198
837	33	1.0		7/17
-110	63	48	144	342
840		69.5	1390	1732
860	76		1-1-1-	
		87.5	1750	3482
880	99			
		ļ		
<u></u>		<u> </u>		
		•		
	FOR HEC-1		CURVE)	
ELEVATIO		PRAGE ?-FT		
825·7 834.7		17/		
83 6. 7		198		
837.4	· · · · · · · · · · · · · · · · · · ·	215		
	_	240		
838.1		270		
838.1 838.7		_		
83 8.7 83 9.5		375		<u>-</u>
838.7		375 4 25	-	· ·- · · - · · · · · · ·
83 8.7 83 9.5				
83 8.7 83 9.5			· · · · · · · · · · · · · · · · · · ·	

reppon

DOXT IN STOCK DIS

TROM CODER BOOK CO. SOME

COMPUTED: PRINT

3-11

DISTANCE (FT,

Ö

Subject JOHNSON LAKE DAM

Sheet No	of
	27-79
Computed	NUM
Computed Checked	I DD

JOB NO. 3409-14

SQUARES	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 E	30
	DETERMINATION OF "C" FOR LOW LEVEL ONTLET	
	3	- .
	D = DIAMETER = 24 = 2 FT	
	5 -M = 0.014 (OPEN CHANNEL HYDRAULICS, CHOW P. 110)	<u>-</u>
	6 - AP = AREA OF PIPE OPENNING = 3.14 FT2	
	- LP = LENGTH OF PIPE = 20 FJ	
	8 - Ky = FRICTION LOSS THROUGH PIPE	
	* Ke = ENTRANCE LOSS OF PIPE = 0.78	
	10 CP = COEFFICIENT OF DISCHARGE (NCORPORATING APEZG)	
	11 C = COEFFICIENT OF DISCHARGE	
	$\frac{12}{13} = \frac{5087 m^2}{D^{4/3}}$	
-	$D^{4/3}$	
	$C_p = A_p \sqrt{\frac{2g}{1 + K_e + K_f L_p}}$	
:	16 / 1+ Ke + Kf Lp	
<u></u>	17	
	$C = \frac{CP/AP}{\sqrt{P}}$	
	\sqrt{z}	
	20 2	
<u> </u>	$\frac{21}{22} \qquad K_{4} = \frac{5087(0.014)^{2}}{443} = \frac{0.997}{665} = 0.014$	
	$\frac{12}{4} = \frac{1}{(24)^{4/3}} = \frac{1}{68.5} = 0.014$	
	24 Cp = 3.14 64.4 = 17.5	
	25 26 1+0.78+(0.014)(20)	
-	27	
	17.5/3.14	
	29 C =	
	30 /6.4.4.	
	31	
	32	
	33	
	34	,
	35	
	37	
!	3-14	

Subject JOHNSON LAKE DAM

JOB NO. 3409-14

N SCALE	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 5 6	7 8 9	10 11 12	13 14 15	16 17 18	19 20 21	22 23 24	25 26 27 28
	· 2	DRAWD	OWN	CALC	ulAT	10NS	_		
	3	/		4 11			_		
	CALC	CULATI	ONS	MSSUI	112:	-		-	
	5	NO S.	IGNIFIC	PANT	WELO	w			
	6 1	LOW		,			OPEN	PATING	· · · · · · · · · · · · · · · · · · ·
	, ,								El OUTLET=
	<u> </u>		CP-H	$r^2 = 17.$	5 H/2	(SEE	PREVIOUS	PAGE)	820
f '		AC-F.							
	6-	DAYS	5 = 1	STORAC	SE /AC	- FT- I	PAY		
_{1:}	2	······	· ····································		·				• • • • •
Ti:	3 ELEV.	STORAGE	4 STORAGE	H	Q	AVG. Q	AC-FT	DAVE	<u>† </u>
]1	4 FT	AC-FT	AC-FT	FT	CFS	CFS	PER DAY	DAYS.	
1!	837	198			58				
11	i		68			55	1.09	0.62	
	835	130		9	52.5				
11	9		50			49.4	98	0.51	
2	833_	. 80			46.3_	- (
2	831	50	30	5	39	42.6	84.5	0.35_	
2:	2		- 25-		3/	34.6	69	0.36	
2:	1 829	25_	20-	3	_30.3_			0.56	
24			15			24_	48	0.31_	:
2	1 827	10		-/	- 17.5				
2			10 -			-8-7-	1.7	0.59	·
	V2/	0		0	0				
2	9	 							<u> </u>
3	0	 			<u> </u>				- · · ·
3	1			l		2 ,	: <u>-</u> . <u>-</u>	2.74	DAYS -
3:							1.		•
3	ŀ					•			
3	į		• =						
3	1					- •			
3							1		
		; ;		3 -	15	i			-
			; <u></u> -				!		

NO. 31,282. TO DIVISIONS FER INCH BOTH WAYS.

(OOM)ONX IN STOCK DIRECT FROM CODEX GOOK CO. NGHACOD MASS GRAPH PAPER Θ

3-16

PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
PHILADELPHIA, PENNSYLVANIA

CONCORD,NH

ANCERSON-NICHOLS & CO., INC.

HEC-1 OUTPUT OVERTOPPING AND BREACH ANALYSIS

JOHNSON LAKE DAM

===

<u>____</u>

	4	PPRSON	LAKE DA	ALJOHNSON LAKE DAM OVERTCPPING ANALYSIS P. MIREMADI ANDERSON-AJCHOLS	PING ANA	YSIS F	. MIREMAL	I ANDERS	ON-AICHO	81	
∾ ₩	A 20 A	1 0.25	AZ DAF WUMDEF US 60459 A30.1 0.25 0.50 FULTIPI	ES	F 24-HOUR	JR PPP					
•	د	170	6	10	-	ے	6	0	0	0	0
ď	 	ę,									
¥	7	~	r;	-							
_	5		0.25					•			
€	×	E	Al					-			
ο.	X 101	KIDEVELOP	INFLOV	INFLOW HYDROGRAPH	.						
10	£	_	~	9.0			e.			-	
11	۵		25	111	123	133			,		
12	-							~	0-1		
13	72	,	0.58								
= :	> :		;					•			
15	×	-	D 2					H			
16	× 3	OUTE IN	FLOW HY	KIROUTE INFLOW HYDROGRAPH THROUGH RESERVOIR	THROUGH	RESERVO)	~				
17	>				_	-					
18	7.	-						198	-1		
19	\$	Y4 836.7	837	837.4	838.1	838.7	839.5	841.2			
20	¥ 5	0	2.3	28	146	357	9 L 9	3131			
21	4.5	0	170	198	215	240	270	375	425		
22	16	825.7	836.7	837	837.4	838.1	83A.7	839.5	841.2		
23	\$	637									
. +2		837.4									
25	¥	=	-	826		837	837.4				
26	₹,	11	-	826	_	837	860				
27	ند	-									
28	X 1 R	OUTE OF	TFLOV P	KIROUTE OUTFLOW LYDROGRAFH THROUGH	THROUGH	REACH	CNE				
	>				-	-					
30	۲1	-						-			
31	76	0.1	0.0	0.1	A33.1	841.8	100	0.013			
32	11	0	841.8	30	838.8	11	839.1	7.7	833.1	93	R33.1
33	47	F 33	839.1	180	837.8	260	840-8				
G B	¥	_									
35	X Z	OUTE OF	ITFLCV F	KIROUTE OUTFLOW HYDROGRAPH THROUGH REACH TWO	THROUGH	REACH	rvo				
36	>				-	-					
37	7	- ,		•		•					
200	£ !	1.0	*	1 0	1.978	9 6	363	610.0		į	
39	_	0	E + E	20	821.6	= =	H2 / •6	2	826.1	H3	H26.1
0	۲,	E.	827.6	98	827.6	150	E 4 F				
	× ;	~ 10		K l Sections of the outpools to the test tests	7000	,	5				
7.4	£ *				-	-					
	- 5	-			•	•		7			
	, Y	1.0	0.0	0.1	757.5	780	2800	0.023			
: 4	7.7	; c	7.80	. €.	160	. R.	750	1. 1.	757.5	552.5	757.5
1.4		552.5	760	822.5	160	1120	780			t 1	
8	×	Ď.									

PPEVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUWOFF HYDROGRAPH AT ROUTE HYDROGRAPH TO RCUTE HYDROGRAPH TO ROUTE HYDROGRAPH TO ROUTE HYDROGRAPH TO

<u>7</u>

Ç (S)

2.2.2

<u>.</u>

FLOOD HYPROGRAPH PACKAGE (HEC-1)
nam SAFETY VERSION JULY 1978
LAST MCDIFICATION 26 FER 75

RIM DATE: 79/31/21: TIPE: 08:02:17:

1

JOHNSON LAKE DAP OVERTOPPING ANALYSIS P. PIREPADI ANCERSON-NICPCLS DAP NUMBER US 00499 0.1 0.25 0.50 MULTIPLES OF 24-HOUR PMP

JOR SPECIFICATION

MULTI-PLAN ANALYSES IN BE PERFORMED NPLAN= 2 NRTIO= ? LRTIO= 1

#TIOS= .10 .25 .50

۔ ن

·...

SUB-AREA RUNDFF CCRPUTATION

DEVELOP INFLOW HYDROGRAPH

TAUTO INAME ISTAGE JPR T JPl. 1 0 HYDRCCRAPE CATA TECON TTAPE ICOMP 15740 A1

TUCAL ISAME R96 0.00 1SNCE 0 R72 RATIO 0.000 R48 0.00 TRSDA TRSPC PMS R6 R12. P24 22.08 111.00 123.00 133.00 PRECIP DATA SNAP 0.00 TAREA .60 1 2 2 SFFE 0.00 1HYDG 1

RIIMP 0.00 ALSHX CNSTL •10 STRTL 1.00 1.00 R 1 10K LOSS DATA STRKS 0.00 ERATM 0.00 RT10L 1.00 01.TKP STRKE 0.00 LRAPT

UNIT HYDROGRAFH DATA

STRTG= -3.00 GRCSN= 0.00 RTIOR= 1.00

54. VOL: 1.00 ŭ. non Prurs, Late 12 209 UNIT HYDROGRAFH 19 FND OF PERIOD CROIMATES. IC= 300. 11. 385. 16.

FRO-OF-PERIOR FLOW

																										•																									
C0*P 0	~	· (v	•	C	5	1057.	2 7	52	K :	75	0	7	326	9 4		270	164	690	œ.	\sim 0	0 1	٠.	- 0	S	_	-	5		H5.	5 F.	946	•	37.	10 H	• 6 6 7 E	32.	31.	31.		31.	31.	31.	31.	31.	31.	31.	.10	• • • • • • • • • • • • • • • • • • •		31.	31.
1.08	• 02	50.	£3.	• 05	25.	. c		2	-02	. n 2	• 0.5	.62	0.0	20.	٠	200	• 05	-02	•05	٥. د د د	2 6		200	0.05	0	• 0 5	• 02	• 05	20.0	2 6			• 0.5		2 0	د د	20.	25.0	200	• 05	• 02	2 ii •	5	E	20.	25	7 6	· 6	200	20.	
EXCS	•	•	•	•	•	P .		m	6	w,	•	•	•	•		7	1	m	F)	M .	nc	: c	2 6	. 0	0	0	0	0	0 6	> 6	> c		ت	0			.01	0	9 0	0	0	0	0							.01	٠.
RAIA	. 49	64.	•	4	•	4 1) W.	6	ĸ.	•	•	•		7 4	- 10	1	3	P	M) 1	ი c	2 6	-	0	0	0	0	0	0 6	> c		- 0	6	0	-		.03	0	0	0	C1	0	0	0	0	0	ے ت	2	-	c	.93
PERICO	. 86	2	8	89	26	- 6	2 6	2.6	9. R:	96	16	9.8	66	001	191	103	104	105	106	107	¥ 6	107		112	113	114	115	116	117	2 5	112	121	122	123	101	126	127	128	130	131	132	133	134	135	136	137	. O			102	163
HR.FR	?	*	4	Ľ.	۰	٦,	v 1	4	R.)	ů	7	7	r,	* L	0.0		7 . 2	7.3	4.7	7.5			V P	4	8	9.0	9.1	9.2	.			::	0.2	r •	֓֞֜֜֜֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֓֓֓֜֜֜֜֓֓֓֓		21.10	~ .	. 4.		2.0	5.1	2 • 2			e N		• •		4	. A
HO. DA	1.01	1.01	1.01	1.01	1.01	1.01		1.01	1.01	1.01	1.01	1.01	1.01	10.1	1001	1.01	1.01	1.01	1.01	1.01	1.01	T	1.01	1001	1.01	1.01	1.01	1.01	1.01	E	1001	1.01	13-1	1.01	1.01	1.01	1.01	1.01	1.01	1.01	10.1	1.01	10.1	1.01	1-01			10.1	1.01	1.01	1.01
COMP 0	.					۰ ۵																															•			63.	76.	34.	R9.	92.		÷ ;		90	5 6	60	• 66
1055	0	•	0	0	c)	20.	>		0	0	0	0	0	9 (> c			0	0	•	-	ے د	> =		c	0	0	0	0	9 6	S 6	- 0	c	•			• 0 2	N 0	× 0	• 05	-02	• 02	-92	-02	- u 5	200	200		2 6	50.	£ 5.
EXCS	0	-	•	٦	•	000	9		•	٠,	•	•	•	•	ء د	•		9	9	•	9 5	٠	? =	•		•	•	•	•	ې د	, (٠	÷ (•		•0•	e e		5	•0•	*0.	•0•	* 0 •	.	e 4 c. (40.	• 0 •
2 4 4	• 0.2	.03	.02	•05	-02	. 6		.02	. 02	.62	• 02	• 05	-02	20.	20.		.02	• 02	20.	-02	20.5			-0.5	.02	. 02	• 02	• 02	• 05	20.	20.0	• 05	90.	90.	50.		•06	• 96		• 06	, le	.06	. 16	90.	90.	9.0	۵ رو د د		9 5	ن ن •	.96
001 d3d	-	•	m	•	ır ·	• r	- «	· 6·	10	1.1	12	13	1	15	17		19	20	21	25	22	, c	(v	27	2	59	38	31	35	7 6		36	37	er e	ς σ	7	45	n e		4	47	æ	49	5.0	ب. ان	V .	6 t	r 6	. v.	57	5. A
HR.FR	~	•	P	•	r,	ë.	ະ ເ	. "?	•	r.	٥.	~	٠,	ς,		•	7	ç	۲,	4	ç		٠ ()		•	ı.		7	ċ.	? •	, i	} •	-	٠,		ŀ	7.00	~ '	` m	•	ŝ	•	₩	?	٠,	٠,	٠,٠	7	٠.		4
FC.DA	0	•	0	٠,	0	÷ (9 6	: :		٠.		•	•	-	•	? •	2		Ę	٠	P	•	ָרָיבָּיבָּיבָּיבָּיבָּיבָּיבָּיבָּיבָּיבָ	::	•		۶	0	ė,	÷	9 6	9	٠	•	פָּי פָּ	9	1.01	ç	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		6	0	ç	0	é,	Ş	2 6	•			٠

;	•			17.	12.	c ·	•	.	; ;						2	2.	?	%	2•	•	ດໍ ເ	• ‹	• •	. ~	48355. 369-26)																							
	•	•		0.00	Ę	٠,	Ę.	ç. (֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ء د	۽ :	: 5	3	-	6	نع •	Ę	•	٠	٠,	•	•		0	2.72								•	-	•	-	Œ	•	20	9 5	9 64	7.7	3	9	9	•	•	•
	•			0.00	Ċ.	ç	ن	÷ (? ?	•		; =	9	, ü	٠	0.	•	ů	•	•	•	•	, ,		20.69							- 7	1 43		-		•	50.	300	513.	1163.	416.	27.	16.	16.	.	: -	•
	۰		•	0000	Ç.	٠	۰	9	ָרָ בְּ	•			9		0	ů	•	ů	0	٠ :	•	7 9	•		23.41	J. J.	21	5	۱ ۵	A•91	2 2	i	•	: -	• •	: :	42.	50.	₽ 4	6 0 6 1	1369.	9.4	2	16.	ψı	•	: -	•
•	F <	-		148	1	5.	. 15	15	<u></u>		5.5	÷		12	16	16	16	16	16	16	91:	16	16	17	SUF	TOTAL VO		~ ·	N	25			0	:.	• -	• •	38.	50.	50	2 :	471.		42.	16.	16.	11.	<u>:</u> -	
•	=						_		-	-				. ~	~	~	•	m	P)	P 1	ro r	·, <		.02 4.20		2-H0UR	284	&	20 . R	Ė	821.		•	•	•	• •	S	•			76.		• 9	٠.	• •	•	• •	•
•	-	-	: -	1.	1.	.			-	•			: -	-	1.	<u>.</u>	1.	7.	-		. .		•	: -:		_		5 - 6			821.		A1 FOR PL	•	•		•	•	•	-		•	•	•	•	•	•	
C	ט ר		66	0	•66	60	ים	3 · L	. 66	` c		-	16	172.	7	391.	95	2	2	22	5 2	0.0		940		2	i		• 36	. 43	24.		STA		-	~	*	Ď 4	50 1	37	1067	534	~	16	15	ir •		•
6	\ C		0.0	.02	• 0.2	20.	20.	ر د د د د د د د د د د د د د د د د د د د	200		.02	.02	200	• 0 5	-02	- 02	• 02	• 02	• 02	200	200	200	200	• 02		•			-	996	· -		APH	: .	<u>:</u> .	•	14.	49.	50.	9:	762	582	10.8	17.	16.	16.	÷ -	•
4	•			40.	* 0 *	5	•0•	•	•		•	0		3.0	.31	.31	.31	.31	-37	-37	.37		7.	.47		A	2945	**					HYDROGR	<u>.</u>	• •	: :		•66	20•	ည်း ရ	577	635	157.	17.	14.	16.		•
	•			63 .06	•	٠ •	•	٠.		` `	•			•		•		•	•	•	•	· ·		. v			CFS	- 7	INCHES	A 0 - 0 4	THOUS CU #			.	:.	• -	. 2	8	50.	50	581.	. 0	. ~	-	16.	16.	• ~	•
L				10.30	*:	E) 6		֡֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֡֓֓֓֡֓֡֓֡֓֡	7 7	. 4		2	7	~	2.3	2.4	2.5	3.0	3.1	3.5	0 4 0 4		7	-							•			:	<u>:</u> .	• (•	5	- C-	6	2	20	2	Œ	'n.	•

 \mathbb{C}

FR 5.	10.41	. 264.45	333.	411.
	10.41	264.45	333.	411.
ij.	10.40	264.21	33.	410.
17.	9.10	233.22	294.	362.
42.				
CWS	INCHES	2	AC-FT	THOUS CU M

PLAN 2 SAME AS PLAN 1

HYPRUGRAPH ROUTING

ROUTE INFLOW HYDPCGRAPH THROUGH RESERVOIR

UFRT TNAME ISTAGE 1AUTO 0							
1STAGE	LSTR	I ISFRAT	841.20	3131.00	425.	A.1.	EXPL 0.0
TAN BAN		STORA 198.	5.0		375.	840.	CAREA 0.0
JFR 1	4 H d I	1SK 0.000	P39.5A	P06.00	270.	A39.	נספר כי סיט
JFL T	AME I DPT	× 000 °	838.70	357.00	•		
ITAFE	S HAVE S ING DATA ISAPE	0.000		35	240.	038.	PV FLEVL
ICOMP JECON ITAPE JPLT	ALL PLANS HAVE SAME ROUTING DATA IRES ISAPE I	LAG 0	838.10	146.00	215.	A37.	COGV EXPU
	9 A V G	PISTOL 0	A37.40	28.00	198.	837.	SPVID CC
ISTAO A2	00000	NSTPS 1			•	7.	
	0.0		R37.00	2.30	170.	R37.	CRIL 837.0
			836.70	0.00	•	A26.	
			STAGE B	FLOV	CAPACITY=	ELEVATION=	

TOPEL CCGD EXPO DAPWID 837-4 0-0 0-0

DAM PREACH DATA PRUJU Z ELPM TFAIL WSEL FAILEL 11. 1.00 P26.00 1.00 P37.00 P37.40 . 91

	•	2	N C	•	• •	u or	-	Æ	•	1060.	u 0		Œ	α.		-	- 1	9 6		8	5	œ c	20	1	0 1	- (1		60		14.	37.			37.	37.	P.7.4	, d	٠ ج	,	-
	•	•		• V	•	9	. 0	76	757	1062	- 6	90	_	0	ያ ኮ	•	- 1	96	2 5	. 6	2	9	5	100	202	-	. R	÷	-		37.	37.		37.	37.	837.3	37.	32		•
	•	•	» N	• 6	• 1			~	815	1008.	9 4	13	*	2	27.	Ĺ		86	ם ת	98	00	0 0		104.	7	າ œ	···	~	~ ~	14.	20	37	3 6	37	7	837.3	2	32		7
CRDINATES	•	· /	* % ¢	• •	•	12.	19.	45	96	966.	. 0	2	67.	• • • • • • • • • • • • • • • • • • •	E D	•		98	ב ק ק	98	6	200	1	110.	2 2	7F•	38.	27.	22. 1 a -	15.	37.			37.	37.	827.3	-	() ()	36	-
HYDROGRAPH	<u>.</u>	. 7	N C	• «		11.	18	5	20	785.	7	31	2	45.	29.	ì		96	198.	98	6	204	3	117.	28	100	.68	28	22.	15.	-			37.	37.	837.3	37	33		•
END-OF-PERIOD HYDROGRAPH CRDINAT	TFLO	• 2	• •	• •	• 7 F	2 –	. ه	N	29	692.	h 4	2	2	-	50°	•	-	₽ 6	198	6 0	198	200	. •	•	v.	20.00	41.	29.	• •	15.	37	37	5 6	3	37	837.2	31		ςς	Š
END-	•	• N	N C	• •	• ~	• • •	-	2	82	646	2 0	53.	78	9	N -	4		9.8	• 00 F	98	86		72	137.	92	101	90	30.	23.	15.	37.			37.	37.	R37.2	. .	*	3.5	•
	•	. 2	, N	• •	•	• 6		2	8	641.	2 5	5	83		2	Ŀ	1	F 6		8	80	202	2	53	۰ م	o 1	- 45	31.		16.	37.	37.		37.	37.	R37.2	37.			•
	•	· 7	<u>,</u>	• •	• 6	• • v •c	· ·	22	8	656 •	2 0	2	88	PO 1				86	2 4	198.	80	202.	: =	7	6	A14	47.	32.	. 60	15.						837.2				
	•	.	V	• •	• •	,,	15.	21	29	6P1.	9 6		93	6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	57°	• 63		198.		8	8	2 5		194.	٠ د د	- 12 E	•6	#2 (PC (• • • • • • • • • •	37	2		3	37	837.2	۲. ۱	37	2.5	3

· NAU

P27.3	R27.0	P.26 . F.	P26.6									
R27.4	827.1	P26.8	626.6									
827.4	827.1	P26.R	626.6			VCLUPE	37626.	1065.	16.20	411.58	518.	639.
27.5	27.1	26.8	82F.6			TOTAL						
827.5 82			_			72-H0UR	221.	•	16.20	411.58	518.	639.
æ	æ	æ	8			-HOUR	261.	-	16.18	10.95	517.	638.
827.6	827.2	P26.0	B26.7			••						
827.6	7.2	5· · y	٤٠٦			00H-9	A83	25	13.6	346.7	437.	539
82	2	8	82	A STORY	•	PEAK	2118.	• 09				
127.7	327.2	326.9	126.7	13.67			••					
_	_	_	_	1185			CFS	CFS	INCHES	X.	AC-FT	2 CO 2
R27-1	P27.	F27.	826.7	2118, AT								THOUS
827.8	R27.3	827.0	#26.A									
				PEAK OUTELOW IS								
				PFAKO								

THE DAM PREACH HYDROGRAPH WAS DEVELCFED USING A TIME INTERVAL CF .021 HOURS CURING BREACH FORMATION. Bownstream Calcolations Will use a time interval of .167 fices. This table compares the hydrografh for downstream Calcolations with the computed breach hydrograph. Intermediate flows are interpolated from end-of-period values.

· 1.2/

ACCUMULATED ACCUPULATE ERROR FPRCR (CFS) (AC-FT)		•0		39. 0.		72. 0.	84.	•	1:	. 96	04-	15.	26.	37.		•	.00		• • • •	•	• CC		•	•	05.	211. 0.	19.				ני	248. 0.	257. 0.			-	350			100	51.	-	369. 1.	376. 1.
ERRCR (CFS)	•0	9.	14.	17.	17.	15.	12.		<u>.</u>	ស្ត	6.	11:	11.	•11			•	; ,	• .	• 6	• •		້		;	•9	•	e . (• 3	0 P		5.	9.	12.	15.	17.		• • •			6	•6	9.	7.
COMPUTED BREACH HYDROGRAPH (CFS)	29.	35.	. 46	.96	.07	86.	104.	124.	145.	148.	193.	219.	246.	275.	305	• • • •	900		* C * C * C * C * C * C * C * C * C * C		552	5.92	632.	676.	721.	767.	914.	863.	912.	1013	1066.	1119.	1172.	1227	1272.	1337	1000	15.00	1000	u.	1741.	1814.	1846.	1964.
INTERPOLATED RREACH HYOROGRAPH (CFS)	29.	• • •	58.	73.	87.	102.	116.	131.	145.	173.	201.	229.	257.	285	313.	0470	.070	• 00 • •			561.	. 66%	637	676.	724.	773.	R22.	871.	416	-	1066.	1124.	1181.	\sim	1297.		****	15.70	1503	1676.	1750.	1823.	1897.	1971.
TIPE FROM PEGINNING OF PREACH (HOURS)	0.000	. 121	-042	.063	.083	.104	.125	.146	.147	.188	.208	•229	• 250	.271	262.	616.	0000	F 10 F	0.00	0 * 0	82.4	8.5	624.	.500	.521	.542	•563	•583	960 4	744	199.	-688	.708	• 729	• 750	1771	261.	21.0	- C	. A 75	.896	116.	126.	97.6
TIME (HOURS)	12.667	12.6PB	12.708	12.729	12.750	12.771	12.792	12.813	12.833	12.854	12.875	12.896	12.917	•	12.958	12.979	13.000	13.021	13.042	77.000	13.100	13,125	13-146	13.167	13.186	13.208	13.229	13.250	13.271	13,313	13.333	13.354	13.375	13.396	13.417	13.438	\$6.00 ***********************************	13.577	13.501	13.542	13.563	13.583	13.604	13.625

Ċ

Ĉ

F 2	
STATION	

TIME		(0)	INTERPCLATED B	TED BREACH	BREACH HYDROGRAPH		(+) POINTS	(*) POINTS AT NORMAL TIME INTERVAL	TIME INTE	RVAL			
•	.006	•		BREACH HYD!	ROGRAPH 1000	1300		1600		. 0000	0000	c	
~	. :	•			•							• •	
~	e.	•	•	•	•	•	•	•	•	•	•	•	
۳,			•	•	•	•	•	•	•	•	•		
4	PC		•	•	•	•	•	•	•	•	•	•	
R:	٠.	•	•	•	•	•	•	•	•	•	•	•	
12.77 6	• •	•	•	•	•	•	•	•	•	•	•	•	
	P0	•	•	•	•	•	•	•	•	•	•	•	
	. 80	•	•	•	•	•	•	•	•	•	•	•	
Ε,	•	•	•	•	•	•	•	•	•	•	•	•	
12.85 10	24		•••••••		• • • • • • • • • • • •	•••••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	• (• (• •	• •	• •	•	• 1		• (•	•	
•		2	• (• •	• •	•	•	• •	• •	•	•	•	
12.94 14				•	•	• •	• •	• •	• •	• •	• •	• •	
-			•	•	•	•	•	•	•	· •	•	•	
_			•	•	•	•	•	•	•	•	•	•	
_	•	•	•	•	•	•	•	•	•	•	•	•	
_	•	•	•	•	•	•	•	•	•	•	•	•	
~	•	•	•	•	•	•	•	•	•	•	•	•	
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	E	••••••			,	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	
2		•	• æ	•	•	•	•	•	•	•	•	•	
	•	•	• £	•	•	•	•	•	•	•	•	•	
	•	•	י ני	•	•	•	•	•	• •	•	•	•	
		• •	• •	•	• •	• •	• •	• •	• •	• •	• •	• 1	
		•	•		•	•	• •		•		•	•	
27	•	•	•	BÒ.	•	•	•	•	•	•	•	•	
	•	•	•	8.		•	•	•	•	•	•	•	
29	•	•	•	•	80	•	•	•	•	•	•	•	
	• • • • • • • •		• • • • • • • • •		B		•••••••	• • • • • • • • • • • • • • • • • • • •		•••••••		• • • • • • • • • • • • • • • • • • • •	
13.29 31.	•	•	•	•	• 9	•	•	•	•	•	•	•	
		•	• •	•	•	• •	• (• •	• (• (• (• •	
		•	•	•	•		•	•	•	•	•		
		•	•	•	•	8	•	•	•	•	•	•	
			•	•	•	.80		•	•	•	•	•	
	•	•	•	•	•	•.		•	•	•	•	•	
38	•	•	•	•	•	•	BO •	•	•	•	•	•	
		•	•	•	•	•	00	•	•	•	•	•	
-				•••••••	••••••••		3	• E C • • • • • • •		•••••••	••••••		
7 9	•	•	•	•	•	•	•	• 1	•	•	•	•	
7	•	•	•	•	•	•	•	2	•	•	•	•	
?	•	•	•	•	•	•	•	•	• 6	•	•	•	
•		• •	• •	• '	• •	•	•	•	• •	•	•	•	
•		• •	•	• •	•	• •	• •	•	• •	, , b,	• •	• (
•		• •	• •	• •	• •	• .	•	• '	•	ر م	•	•	
13.655 48			•	•	•	• •	• •	• •	. •	•	•	• •	
•		•	•	•	•	•	•	• •	•		•	•	

The second one which is a second or and

<u>?</u>

•CVF•

S
w
Ξ
•
¥ Z
_
ORO
œ
Ö
I
•
=
RA
3
900
080
<u></u>
Ξ
Ξ
_
0
00
=
~
╗
<u>-</u>
7
ŭ.
5
7
ċ
ER
<u></u>

	2•	\$	5	2.		14.	2.	٠٢٥	205.	62ª•	592.	375.	15.7.	A7.	.25	2P.	. 53.		19A.	- d.: [
	2.	.	;	?	•	14.	20.	73.	273.	662.	. 604	396.	171.	92.	R) 83	30.	23.		196.	1:8.
	?	.	.	?	ς.	13.	20.	56.	250.	561.	614.	419.	187.	97.	59.	32.	24.		198.	198.
	5	2•	2.	2.	•	12.	19.	41.	227.	509.	624	442.	205	103.	62.	34.	2 4 •		198.	1.4.
72																	25.	le.	_	1 F.R.
OUTFLO	2.	5	%	2.	3.	10.	8.	26.	182.	•90•	640.	490.	245.	115.	£ 9	39.	25.	STORAG	198.	19B.
	; 7•	*		2.	P.	10.	17.	24.	158	375.	645	514.	269	122.	72.	•	26.		194.	198.
	5	2.				. 6	16.	23.	137.	357	646.	538.	294.	129.	75.	-	26.		194.	151
	,			,					120,	336	1 64 Ral	559.	322.	177	79.		27.		198	198.
	,						-		101	200	641.	577.	45.5	145.		6	28.		198.	136

198.	178.	201.	206.	210.	22A.	261.	333.	325	274.	242	22₽.	220.	215.	212.		37.	37.	37.	37.	37.	37.	37.	837.B	38.	39.	39.	38.	38.	37.	37.	37.	37.	
198.) .	2	€	_	~	25P.	~	C	~	4	N	CV	-	~		37	37	37	37	37	37	37	P37.7	ec Fr	39	33	3.6	38	37	37	m	37	
198.	178	. 200	205	209	221.	255.	318.	330.	284.	246.	230.	221.	216.	212.		37	37	3.7	37	3.7	37	37	P37.6	33	3.0	39	38	3.8	3.1	37	37	3.7	
198.	- 24	99	204.	503	218.	252	3.05	332.	0	248.	231.	22	216.	213.		37.	37.	37.	37.	37.	37.	37.	837.5	38.	39.	6.2	38.	ap.	37.	37.	17	37.	
198.	198.	199.	204.	209.	215.	246.	292.	334.	295.	251.	232.	223.	217.	213.		37.	37.	37.	37.	37.	37.	37.	837.4	38.	38.	39.	38.	38.	37.	37.	17.	37.	
86	6	S)	c	0	-	245.	ø.	#1	_	5	33	5	17	-	STAGE	37.	37.	37.	37.	37.	37.	37.	837.4	38.	838.B	39.	38.	30.	37.	37.	37.	37.	
198.	٥.	5	0	c	32	4	~	m	6	r.	1	2	8	_		37	37	37	37	37	37	37	837.3	33	3.8	39	39	3.8	39	37	37	37	00000
19R.	100	198.	202	207.	211.	238.	270.	338.	312.	261.	236.	225.	218	214.		37.	37.	37.	37.	37.	37.	37.	837.3	38.	38.	39.	39.	38.	38.	37.	37.	37.	17.00
198.	198	198.	202.	207.	211.	235.	267	338	(317)	265	238.	226.	219.	214.		37.	37.	37.	37.	837.0	37.	37.	837.3	37.			A 30.1	ċ		837.7	7.	:	240 AT TIME
19R.	10%	198.	201.	206.	211.	231.	264.	336.	321.	269	240.	227.	220	215.		637.0	R37.0	937.0	837.F	R37.n	837.1	837.2	837.3	837.8	838.6	R39.2	. 839.1	R38.7	838.1	837.7	837.5	837.4	DEAN DUTE OU TE

. C

101AL VOLUPE 23229- 5529- 10-00 254-10 320- 3955-	
72-HOUR 137• 10•00 254•10 370•	
24-FCUR 1511- 2511- 211-43	
6-HOUR 483. 14. 7.50 190.39 240.	
PEAK 648. 18.	
CFS CFS INCHFS HH AC=FT THOUS CU P	

HYDROGRAPH ROUTING

........

.........

•••••••

ROUTE GUTFLOW HYDRIGRAPH THROUGH REACH CKE

IAUTO	ے
ISTAGE	c
INAME	0
JPRT	c
JPL T	c
ITAPF	•
ICCON	c
IC OMP	-
ISTAG	

				2.	. 5	å.	. 4	•	2	041	E (10 to		66	م ہ	20 4	17.		•	د	•		•	•	.		• •	0	6	•		• 0		33.	P33.3	33.	33.	33	.			0	-	,	5		•
K. C.	RAT n			8		ເບ	• •	14.	20.	9	770	35	244	96	61.	• • •	17.	•	•		• •		.0	9		• -	• •		•	• •	• •	•		33.	2000 2000 2000 2000 2000 2000 2000 200	(A)	33.	33	9	33		30.	36.	36.	35	* *	•
	A ISP	EACH		2•	2.	۰.	, r.	: m	20	42	90	ט מ	2	1	•	Ňħ	18.		•	.	• •			6	.	<u>.</u>	: :		•	.		•			60 60 60 60 60 60		-	. .	* 5	n 0			ec.	a.f.	~		
	STCR -1	BA								m	α (9	~	1																				60	e. e	. e.	P.3	80		1) F	2 6		(P)	e.	80	2.5	2
IPHP 0	15K	3		2•	5.	.	. 4	٠ ٨	13	6	16	= =		22	~	•	19.		•	.	÷ =		•	6	•	<u>.</u> .	-		•	•		•		33	633. 54.54	, PC	33.	F	= :	- C	. C	39	3.6	36.	35.		
1 00 I	× 000°0	1, 8.110		2.			N P	; :	18.	5	5	::	334	3	.0:		19.			.	• e			ċ	•	: .	-		•	•	• •	•			33°3	, ,,	*	'n.	•	• •	• 6	. 6		ç	ů.	• •	÷
NG PATA ISAFF 1	APSKK 0.000	. PLAN	TFLOV	•	•	•	•				•	•		•	•			TOR	•		•				•	•							TAGE	80	ec ec	e c	•	œ (ec e	*	. cc	. ec	~	•	ac t	E C 6	ox.
ROUTI IRES	LAG	_	S	8	~	~ ∘	~ ~		œ	£.1	S :	> 0	· 0	~	4	•	20.2	S	0	.	> -	•	•	•	~	-	-		٥	6	-		S	33.	9333	, P	33	33	4.			39	39.	37.	50.	•	9
AV6 0.00	ASTPL 0	STATION		2.	5	· «	. 6	ے ر	-	24	55	2 5	N IO	F.,	•	9	21.		•	.	• •	• •		•	•		÷ -		0.	•	• e			33.	80 80 80 80 80 80 80 80 80 80 80 80 80 8) P)	33	33	*	# C			968	3.7		<u>.</u>	
CL 055	RSTPS 1			%	÷	∾ (N G	0	•	23	23	9 :	2 =	68	m	_,	22.		٠ <u>.</u>	ċ	• ·	. 0		•					ċ	• 0	• •	•		33.	99.55 P.		33.	W. 1	33		- 0		3.9	37.	5	•	
	841.2			2.	2•	٠ «	· 6	. «	·	22	5	ς,	C	8	8	m .	25. 23.														• c			33.	833.0		33	33	33.	<u>.</u>	֓֓֓֓֓֓֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֡֓֡֓֡֓	0				ĸ.	•
	اد اد			?	÷.	٠,		7.7	15.	2	1512.	669.	. A.	201.	34.	56.	24.		•	٠,	•	. 0	:	0.	•		• •			•	• •			33	833.3	, ,	3	10	2	e 6	- C		, b.	5	5	S .	8
	STAGE																																														
	HAX IMUR																																														

u. <u>u</u> <u>i</u> j

	PFAK	R-HOUR	24-F0UP	72-HOUR	TOTAL VOL
CFS	2093.	AB0.	261.	221.	. 376
V. 3.0	59.	25.	*	•9	Ĭ
TWCHES		13.65	16.18	16.20	16.
E		346.66	410.95	411.58	411
AC-FT		437.	£17.	518.	in.
HOUS CU M		538.	€3₽•	639.	3

MAXIMUM STORAGE =

UME 25. 65. 65. 58

. 841.3 MAXIFUM STACE IS

OMG)	•	•	· 7	5.	2	ភ	13.	.,	71.	270.	•009	604	200	172.
(OVERTOPPING	,	. 5	2.	5			13.	20.	55.	248.	558.	615.	420.	180.
		2•	5	5 •	٢.	÷	12.	19.	!	275.	. 633	625.	* 4 4 9 •	201.
AN 2, RTIO 3		2.	%	5 •	2.	3.	11.	18.	29.	203.	449.	6.33	4 (P.	226.
. PLAN	OUTFLCV	5 •	5 •	2•	~	F)	10.	10.	2.	181.	493.	641.	492.	247.
STATION		2•	2.	2•	5.	,	10.	17.	200	167.	170.	6.45	A 1 6.	271.

2000 B 2000 C 20

<u>.</u>

C 5

	134.	129	12	.5.	116.	109.	103.		97.	93.	R7.
	`.'	75.	,		F. B.	65.	629		6	£6.	N
•	• 6.	:	•	11.	39.	36.	• 6 10	-	32.	30.	28.
•	27.	26.	~	56.	25.	25.	-		24.	23.	m
					AUT.						
6	•	,		•			•		•	.0	0
		6			•		0		٥.	0	•
e e		0		•		•	0		٦.	0	· C
•		0			0	•	•		•	•	•
ė		ٿ		9.	•	0			•	٥.	0
ن.	•	•		•	•	0.	0		•	•	•
0	ė	0		•	•	•	0		•	•	÷
•	ė	ě		0.	•0	•	.		ů	٦.	9
•	•			0.	•	0	•		•	•	0
•	:	0		••	•	•	•		ċ	-	-
:	:	-		:	:	:	-:		1:	-	1.
1.	•	ؿ		•	<u>.</u>	•	•		•	•	•
0.	0	•			<u>.</u>	•	•		•	.	• •
		•		0.	0		0		•	•	ċ
ċ	0	<u>.</u>		0.		•	ċ		•	6	•
•		•		. 0	•		•		ċ	•	•
					•0	•	•		•	0	•
					74.0						
7.22	944.4	844.4	_		- 47		8.00 K		833.53		
24.4						, pr					, p.
0 P P P P P P P P P P P P P P P P P P P	000 000 000 000 000 000 000 000 000 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) M) M) P
1 m	10 m					33.3	100		833.3	P P	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
244.4	P 4 4 5 4	10 mm				10	F)			100	
300 E	23.00	P330-7	-			33	33.		50	33	, 67
0.00	833.9	833.9	-			3.0	34		5	5	
334.1	834.1	834.1	~			34	4		35	35	•
P36.2	P.36.5	836.9	_	:	•	38	38.		3.8	38	m
R3R.9	839.0	839.1	_		•	39.	39.		39	39	77
139.7	A39.7	839.7	_	39.7	839.7	839.7	A39.6		R39.6	P39.6	839.6
#39.6	839.5	A39.5	_		•	39.	39.		839.2	39	F)
830.1	F39.0	838.8	_		836.6	38.	38.		838.0	37	•
P37.1	836.9	836.7	_		•	36.	P36.2	_	136.0	S.	P)
135.7	835.6	835.5	_			35.	35.		835.1	35	F)
R34.9	N. 4 W. W.	834.7	_		•	, 4 th	34.		H34.4	4	m
834.3	P34.3	834.3	~			34.			•	4	2
			PFAK	K-HOUR	24-H011R	72-	HOUR TO	TALV	VOLUME		
	•	011	C. A. B.		7	•			100 R.		
	7	. W. L.			•	. 40	•	j	658.		
	1741		,	7.00		-	5		00.01		
	; E			190.36	9.50	25	000	Š	60.45		
	- D4	: -		•	F		202	ì	320.		
	THORE			296.			ď		104		
	>>)	•	•	,				

PAXIMUM STORACE =

839.7 MAXIMUM STAGE IS

......... •••••••

HYEROGRAPH ROUTING

........

The second secon

ROUTE OUTFLOW HYDROGRAPH THROUGH REACH TWO

	1AU11				
	ISTÁG JCOMP ILCON ITAPF JPLT JFRT INAME ISTAGE 1 0 0 0 0 0		LSTR P	TCPRAT	0
	INAME			CTORA	0.000 -1.
	JFR T 0		I FMP 0	, X	000.0
	JPL 1	APIE	1 0P T 0	· >	0.000
:	IT AP F	S HAVE S	1SAMF 1	APCKK	0.000
מי אראכי	I E COM	ALL PLANS HAVE SAME ROUTING DATA	IRES	٠ ٧٠	
מסאוור ווי	JCOMP 1		۸۷، 0 • ۵0	NC TOIL	0
ROULS, BUILDIN HIURDGRAFH HIRODGR ALACH INC	ISTĀG		0.000	NO TON	
COLLON			0L0SS		
ROOF					

NORPAL PEFTH CHARNEL ROUTING

325. .01300 ELMAX 840.0 FLNVT 826.1 .1900 .0960 04(1) .1000

3	CROSS SFCTION COORDINAITSSTAFELEV,STAFELEVETC 0.00 840.00 50.00 R27.60 80.00 827.60 R3.00 R37.60 150.00 N40.00	0801NA1F3 50.00 98.00	55TA+ELEV+STA R27-60 80-0 R27-60 150-0	1,ELEVETC 10 827.61 10 840.00	80.00 826.10		83.00 026.10			
STORAGE	0.00 3.15	3.69	.03 4.27	• 30 • 67	•61 5•51	.95 6.18	1.32	1.73	2-17	2.65
OUTFLOW	0.00 2012.7A	5.81 2505.79	15-26 3057-28	72.29	192.79	366.33 5080.53	591.03 5884.04	866.93 6755-17	1194.93	1576-35 R707-65
STAGE	826.10 833.42	826.83 834.15	827.56 834.88	835.61	827.03 836.34	829.76 837.07	830.49	831.22 838.54	831.95 839.27	832.6R 840.00
FLOV	0.00 2012-74	5-81	15.26 3057.28	72-29	192.79	366.33	591.03 5784.04	866.93 6755.17	1194.93	1576-35

			5 •	.	~	. :	•	14.	21.	1006.	721.	1064.	568.	224.	101.	59.	39.	25.	17.		•	•	•	•	•	•	•	•	2.	2.	%	-:	1.	• •	•	•	•	•		P26.4	A26.4	N26.4	P.26.4	826.9	n27.5	P27.6
_			5	. 2	2•	5	ທີ	13.	20.	615.	166.	1056.	624.	248.	107.	62.	+1.	26.	17.		•	• •	• •		:		•	•	-	.	5 •	1:	-	•	•	•	٠ د	•		F2C.4	P.26.4	P26.4	P26.4	E26.8	F.77.4	127.6
(800000)	NENCH,		5	*	%	5	ů.	13.	19.	313.	A23.	998.	663.	275.	115.	65.	43.	27.	18.		c	:	•		•	ċ	•	ċ	:	.	2.	1.	-	•	•	•	:	•		P26.4	P26.4	R2C. • 4	426.4	£26.7	F27.4	F27.6
			5.	÷	2•	5 •	•	12.	19.	101.	919.	885.	705.	£06.	124.	60.	• 4 4	28.	19.	•	•	•	• •	•	•	•	•	•	•	5	2.	1.		•		•	•	0		P26.4	82r.A	R26.4	82C.4	P.21.6	F27.3	P ? 7 . 6
	FLAN 19 KIIC S		5.	ć	2.	.	'n	:	18.	28.	1008.	769.	753.	340.	133.	.17	46.	30.	-02		•	•	•	•	•	•	•	•	÷	2•	2.	۶٠			•	•	•	•		1126.4	826.4	P 2 C . 4	1.26.4	P 26.5	427.2	527.6
C	•	OUTFLOW	2.	.		5	er,	-01	17.	25.	1220.	619.	804.	378.	144.	75.	* # *	31.	20.	ROTA		•	• •	•	•	•	•0	•	•	5	1.		7.	ċ	•	•	•	• •	STAGE	P26.4	826.4	R26.4	826.4	826.4	627.2	127.6
	2017			.	5		·.	9.	17.	23.	1364.	646.	858.	420.	156.	79.	50.	32.	21.	•	c	•	•	•	•	•	•	•	•	2•	1.	%	-		•	•	•	•		126.4	826.4	826.4	826.4	P26.4	P27.1	P.27.6
			2•		۲,	5	.	9.	16.	22.	1840.	640.	915.	466.	170.	64	52.	4.	22.		•	•		•		•	•	•	٤.	3.	<u>:</u>	2•	.:		0	•				R26.4	R26.4	826.4	P.26.4	826.4	027.1	957.6
833.4			2•	5	?	5 •	?	æ	16.	22.	2043.	663.	975.	510.	186.	69	54.	36.	23.		•	•	• 0	ċ	•	•	ċ	•	:	3.	-	2•				•	•	•		H26.4	P26.1	626.4	656.4	826.4	127.0	4.7.6
- 			.	2.	5.	5	2•	7.	15.	21.	146.2.	684.	1027.	551.	204.	. 40	56.	37.	24.		•	•	•	:	•	0	•	•	<u>.</u>	м.	-1	2.	:	:	•	•				A26.4	826.A	826.4	826.4	#26.A	H26.9	827.5

			1				2.00	200	5000	C • T ? :
A27.6	F27.	~	157.1	1.122						8,010
2 1 1 1 1			4 6 7	B 12.0	~		31.3	N.31 • 1	0.10.	
A33.5	1.000	_						211.5	P.3.1.6	-31.7
7.010	7.07.7		5 C	8 30 • V	700			3 1) 1) 4) 4	
	2 1			1 1 1 9	C * 4		8.05	830.7	820.6	2005
931.5	831.		2110					4	4 500	6,000
	67.6		0.000	E . 60 E	823		C	65.70	. 30	
F30.2		•					7 000	B2B.6	A/R.1	7.25
0.000	A28.5	•	28.8	428.1	275		5000			
				1.800	202		120.2	828.2	824.5	1 0 0 7 0
P28.4	826.	•	6.020	2			0	0.77.0	0.700	27.9
	000	•	0.800	828.0	×2×		26.7	70170		
1-229		•	2000	, 1				7.7.7	R27.7	827.1
•	1,700		A27.6	R27.8	128					
0.125		-					7.761	A27.6	A27.6	827.6
R27.7	P27.6	_	P27.6	H21.6	72		00170		• • • •	
								4000		
		PFAK	4-HOUR		FOUR	72-H0UR	TOTAL	VOLUME		
					1.1	221.		37623.		
	ر ا	2043	900		. 7 6	• • •		2000		
	2	58.	25.		:	•		1063		
•	S LO LA	3	13.64		16.18	16.20		16.20	-	
=	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:		:	26.0	411.55		411.55		
	<u>.</u>		70000					£ 5.0		
	AC-F1		436		11 4.	• o T C				
THORE	Z = 5		538,		53.80	639.		639		

KAXIMUM STORAGE =

, 833.5 KAXIMUM STACE IS

PPING)	% 5 5
(OVERTOPPING)	***
	2
. PLAN 2, RTIO 3	****
. PLAN	0UTFLOV 2. 2. 2.
7	
NOIT	***

. . . .

....

3 % %

20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
200 200 200 600 600 110 110 100 100 100 100 100 1		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		88266666666666666666666666666666666666
25 - 12 - 25 - 25 - 25 - 25 - 25 - 25 -		826.4 826.4 826.4 826.4 827.6 827.6 827.6 820.0 828.0 828.0 828.0 828.0 828.0 828.0 828.0 828.0 828.0 828.0 828.0 828.0 828.0
28. 111. 189. 110. 66.43. 66. 110. 110.	· · · · · · · · · · · · · · · · · · ·	826.4 826.4 826.4 826.5 827.2 827.7 820.0 827.2 827.2 827.2 827.2 827.2 827.3
2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W C C C C C C C C C C C C C C C C C C C	825.34 AGE 825.34 BB 825.34 BB 825.34 BB 827.35 BB 829.39 BB 827.37 BB 827.37 BB 827.39 BB 827.30 BB 827.3
100 100 100 100 100 100 100 100 100 100		826.4 826.4 826.4 826.4 827.1 827.1 827.1 820.8 820.9 827.9 8
11 12 12 12 12 12 12 12 12 12 12 12 12 1		######################################
20. 15. 15. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13		826.4 826.4 826.4 826.4 827.6 827.6 829.6 829.6 829.6 829.7 7.1 829.7 140US CF 1
100 100 100 100 100 100 100 100 100 100		E E O D E O

NAXIMUM STÁGE IS

									275.6P 959.17	33452.74	76.8.16 78.8.60	33442.74 191156.81
									225.80 076.20	-	766.97 778.82	
				ŧ						250P7-36 1ER736-86		250#7+36 168736+86
			JAUTO						177.29	17922.64	765.79	17922.64
•	•		I STAGE	LSTÄ	ISPRAT			.50	136-15	11932.57 120610.68	764.61	11932-57 128610-68
:			INAME		STORA			0 757.50	~ 0		0: vc	-
* * * * * * * * * * * * * * * * * * * *			L RQC	ÎPMP	15K			550.00 757.50 552.50	96.37 645.70	7101.53 110824.11	763.42	7101.53
•	ON I ING		Jrt. 1	SAME 17A IOPT	× 000 · 0			.00 757	59.97 575.61	3434.34 94501.50	762.24 774.08	3434.34
	HYDROGRAPH ROUTING	H THREE	11APE 0	PLANS HAVE SAME ROUTING DATA RES ISAME I	A#SKK 0.00		. 02300		•	,	10.50	
:	HYDROG	THRCUGH REACH THREF	1ECON 0	ALL	LAG		ŘLW1H 2800•	1,ELEVET 50 760.00 50 780.00	26.94 508.88	984.78 79602.62	761.05	964.7A 79602.62
•			ICCMP	A A C C C C C C C C C C C C C C C C C C	NSTOL 0		ELHAX 780.0	STA,ELEV,STA, 760.00 550.00 760.00 1120.00	.3.8 445.54	29.26	759.87	29.26 66.087.44
•		HYDROC	15140	000.0	NSTPS		ELNV†	ESSTA 0 760. 0 760.	5.4			
•		ROUTE OUTFLOW HYDROGRAPH		0°0 6°0 8°0 8°0		UTING	. 1000	CROSS SECTION COORDINATESSTATELEVISTATELEVETC 0.00 789.00 450.00 760.00 550.00 760.00 552.50 760.00 822.50 760.00 1120.00 780.00	385.54	12.00 53916.37	758.68 770.53	12.00
		ROUT				KORPAL DEFTH CHANNEL ROUTING	.9400	955 SECTION COOR 0.00 789.00 552.50 760.00	328.93	0.00	757.50	0.00
						EFTH C	.100E	CR0SS 0 552			<u></u>	
						KOR FAL			STORAGE	OUTFLOV	STAFF	1101

	۶.	٠2	2.	2.	5.	<u>:</u>	20.	472.	831.	966.	669.	282.	114.	65.	43.	56.	17.		•	•	•	•	•	•	•	13.	23.	26.	٠ ٤	:		-	:	ċ	
	5 •	2.	۶.	٥.	÷	13.	20.	249.	849.	904.	711.	312.	126.	.69	*	28.	10.		•	•	•	0.	0.	•	:	۶.	24.	75.	·.	ď	*	<u>:</u>	:	0.	
	∻	۶.	2.	~	÷	12.	19.	108.	951.	824.	755.	346.	136.	72.	4 6•	30.	19.		•	•	•	ċ	•	•	•	'n	26.	22.	21.	ě	3.	5	-	•	
	5 •	2.	5	%	a.	11.	18.	43.	1043.	146.	801.	383.	148.	16.	4 8.	31.	19.		•	•	0	•	0	÷	•	1.	2A.	50.	55.	10.	÷	۶.	-	•	
	. 5																		•	•	0	•	•		• 0 .		30.	19.	23.	11.	÷		-	•	
OUTFLO	%	5	* *	2.	.		17.	24.	1406.	673.	896.	464.	175.	A5.	52.	34.	21.	STOR	•0	•	• 0	•	•	•	•	=	33.	18.		12.	÷	2.	-		
	۶.	2.	5	%	2.	9.	16.	23.	1644.	619.	938.	507.	191.	90.	55.	36.	22.		ò	•	•	.	•	•	•		36.	18.	-92	14.	i.	2•	-1	1.	
	. 2	2.	5.	2.	2•	æ	16.	22.	1730.	703.	972.	550.	210.	96	57.	37.	23.		0	•	ċ	0	0	•	•	•	37.	19.	27.	15.	.	٠,	-		٠
	5	5.	.	2•	۶.	7.	15.	21.	1289.	738.	1003.	590.	231.	102.	60.	39.	24.		0	•	•	0	0	•	•		31.	20.	27.	16.	• 5	5	-	٦.	
	2.	2.	2.	~	٠,	٠,	14.	21.	175.	780.	1001.	630.	255.	110.	62.	41.	25.		0.	ئ.	٠,	•	9.	•	;	:	21.	21.	27.	17.	7.	••	-	-	

C

ċ	•	÷	•	Ė	Ė	.	• E	•	ċ
				STAGE		•			
757.7	157.7	757.7	757.7	157.7	-	757.7	757.7	757.7	757.7
757.7	757.7	757.7	157.7	151.1	_	757.7	757.7	757.7	157.7
757.7	75.7.7	757.7	757.7	757.7	-	7.27.7	757.7	157.7	757.7
757.7	757.7	757.7	757.7	757.7	_	157.7	757.7	757.7	757.7
757.7	157.1	757.7	157.7	1.727	-	757.8	757.9	757.0	758.0
750.1	758.2	75.8.3	758.3	758.4	,-	758.6	758.7	758.7	758.8
75.0.0	757.9	758.9	759.0	750.0	,-	755.1	759.2	750.2	750.2
759.3	759.3	159.4	159.4	759.5	,	759.9	160.0	760.1	760.4
760.A	761.2	761.4	761.4	761.3	,-	763.1	761.0	760.9	766.9
750.8	760.7	760.7	760.7	7.097	,-	760.8	760.9	761.0	751.0
761.1	741.1	761.0	761.0	160.9	_	7£0.P	760.8	760.7	750.7
7.0.5	760.6	760.5	760.5	760.4	_	760.3	760.3	760.2	760.2
769.1	760.1	760.1	760.1	760.0	,-	760.0	260.0	160.0	760.0
150.0	760.0	760.0	159.9	150.9	-	759.9	759.9	159.9	759.9
759.9	759.9	759.9	759.9	759.9	_	759.9	159.9	159.9	759.9
750.9	750.9	759.9	759.9	159.9	,-	759.9	159.9	159.0	759.€
759.€	759.5	759.4	759.4	759.3	759.2	159.2	759.1	759.1	759.1
		-		77	,-	IOUR TOTAL	VOLUME		•
	J	_					37607.		
	SAD		49.	25. 7.		• 9	1065.		
	INCH					• 50	16.20		
		ĭ	340			•38	411.38		
	- V	14	4			18.	516.		
	THOUS CU	£		:		39.	639.		

PAXINUM STORAGE = 37.

MAXIMUM STAGE 1S 761.4

	•	* c	N G	• •		1.	20.	99	245	546.	613.	424.	195.	100.	٤٥.	10.00	20.	•		9	•		•	• •	•		•	<u>.</u>	.		::	• •			•	;	•		157.7	757.7	757.7	157.7	756.0	754.0	759.2	759	760.1	760.5	160.6	760.9	7.0076	> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.461
PING)	•	. 2		•		13.	20.		222.	504.	622.	447	213.	105.	63.	5	. 40	•		ě	_	; ;	•	•	•	•	<u>.</u>	: .	ز ف	•	•	N 1				:			757.7	757.7	757.7	757.7	757.9	758.7	S	59	ي ي	9	9	<u>ت</u> :	•	750.0	•
(OVERTOPPING	•		5 •	. c		12.	19.	35.	200	459.	629	470.	233	1111	99	8		• 6.7		É			•	•	•	•	.	:	.	12.	17.	13.	ė,		: .	: (•		157.7	757.7	757.7	757.7	157.9	758.7	159.2	159.9	160.1	160.4	760.6	760.4	750.1	0.001	759.9
F O		?	5.	• ‹		; <u>:</u>	10.	0.5	178.	416.	6.34.	4.9.3	254.	118.	70.	•		•07		e		•		•		•	•	•	ņ	,-	17.	3	.	'n,	.	: ,	•		757.7	757.7	757.7	757.7	757.8	75F.E	759.1	159.9	760.1	746.3	3-056	760.4	7(0.1	768.0	75.5
PLAH 2, PTIO				~ 0		, =	× =	2	157	379		516	277	125			2 5	ŧ		c				•	•	•	•	•	-	20.	17.	14.	.		٠,	•	•		57.	57.	57.	57.	57.	58.	59.	59.	60.	و ن•	Ġ.	760.5	ون	ا ن او ل	ال م
۶ ۱۵	OUTFLOY	2	5 •	÷.	• •	• • • •	17.	2	137	352	647.	537.	300	133		- 4		- 42	ACTO	:) c	•	•	•	•	•	•	•	•	ņ	er.	17.	S.	.		٠.	.	•	STAGE	•	757.7	_	_	757.7		759.0	759.5	760.0	760.3	760.6	760.5	760.2	760.0	159.9
STATION		.	5		• •	• • c	16.	10.	118.	140	200	557	- CC - C	160	10	•	• • •	27.		•	•	•	•	•	•	•	•	•	÷.	9•	17.	15.	.6	•	2•	:	•		757.7	757.7	757.7	157.7	757.7	758.3	759.0	759.4	760.0	760.2	760.6	760.5	760.2	76.0.0	6.651
		2.	?	5	W	• ·		• • • •	• • • • • • • • • • • • • • • • • • • •		• • • • •	9274	0 4 5 F	. C. E.	• 2 0 2 0		•16	24.			•		•	•	•	•	•	•	۶.	÷	17.	9	•			:	•		757.7	٠.	757.7	757.7	757.7	758.3		759.4	760.0	760.2	•	766.5		•	755.9
		۶٠	?	%	\$	• •	- 4	10.		0	• 0 2 7	0 6) C				•	30.		•	•	•	•	•	<u>.</u>	•	•	•	2•	.	16.	16.	10.	÷	5	-1	•		757.7	757.7	757.7	757.7	757.7	75R.2	754.9	759.3	750.9	760.2	760.6	763.6	760.3	760.0	754.9
		?	2•	÷.	~	÷.	<u>:</u> :	•		• • • • • • • • • • • • • • • • • • • •	25.10			· 20 F		• •	57.	31.		•	٠,	•	:	•	•	•	•	•	2.	,	16.	16.	11.	5.	÷				787.7	757.7	757.7	757.7	757.7	75.R.1	750.8	759.3	150.9	760.2	750.6	760.6	760.3	760.1	159.9

759.9 759.5 759.9 759.5 101AL VOLUME 23203. 657. 9.99 253.02 320. 394. 759 • 9 759 • 5 759.9 72-HOUR 136. 4. 9.99 253.82 320. 394. 759.9 24-HOUR 161• 5• 9•97 255•19 393• 759.9 759.7 6-HOUR 481. 14. 7-46 189.36 238. 294. 759.9 759.7 PEAK 637. 18. 759.9 759.8 CFS CMS INCHES MM AC-FT THOUS CU P. 759.9

1 3/10

17. MAXIMUM STORAGE =

MAXIMUM STAGE IS

759.9 759.9

FEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR FULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)	LIPLE PLAN-RATIO ECONOMIC COMPUTATIONS CUBIC METERS PER SECOND)
--	---

	FEAK FI	LOW AND	STORAGE	CÉNĎ C	DE PERÍOD) V CUBIC FE VREA IN SO	SUMMARY F ET PER SEC Uare miles	FEAN FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR PULTIPLE PLAN-RATIO ECONOMIC COMPUTAT Flows in Cubic Feet Per Secend (cubic meters per second) Area in Square Miles (square Kilometers)	COMPUTÄT
OPERATION	STATION	2	ARCA	PĹAN	RATIO 1	8ÅTIO 2 .25	RATIOS APPLIED TO FLOWS RATIO 3	
HYDROGRAPH AT		A1 C	.60	~~~~	294. 8.33)(8.33)(735. 20.82)(735. 20.82)(1471. 41.65)(1471. 41.65)(
RCUTED TC		A 2	.60	~~~	2045. 57.90)(114. 3.21)(2075. 58.75)(362. 10.25)(2118. 59.77)(648. 18.34)(
ROUTED 1C		_	.60	~~~	2027. 57.4134 114. 3.2234	2052 58,11) (362, 10,25) (2093. 59.261 648. 18.351	
ROUTED IC		-	.50	~-	1984. 56.18)(113. 3.21)(2007. 56.84)(362. 10.25)(2043. 57.86)(648. 18.35)(
ROUTED TO		-	•60 1•55)	~ ·	1646. 46.61)(312. 3.17)(1672. 47.34)(353. 10.00)(1730. 48.991(637. 18.04)(

SURMARY OF DAN SAFETY ANALYSIS

<u>.</u>

	TIME CF FAILURE HOURS	15.33 13.67 12.67		TIPE CF FAILURE Hours	0 • 0 0 0 • 0 0 0 • 0 0				(DMIC)			_		
TOP OF DAM 837.40 215. 28.	TIPE OF MAX DUTFLOW HOURS	16.33 14.67 13.67	TOP CF DAP 837.40 215. 28.	TIPE OF MAX OUTFLCW HOURS	17.33 17.00 17.00	(BREACH)			(OVERTOPPING)			(BREACH)		
•	OURATION OVER TOP HOURS	• • • • • • • • • • • • • • • • • • •		DURATION OVER TOP HOURS	7.17		TIME	16.33 14.67 13.67		T1ME HOURS	17.33 17.00 17.17		TIME FOURS	16.33
ŠPILLVAY CREST A37.00 198. 2.	MAXIMUM OUTFLOW CFS	2045. 2075. 2118.	SPILLWAY CREST 837.00 198.	PAXINUM OUTFLOV CFS	4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	STATION !	MAXIMUM STAGE•FT	841.2 841.2 841.3	STATION (MAXINUP STAGE•FT	836.4 839.1 839.7	STATION 2	MAXIPUM STAGE . FT	# # # # # # # # # # # # # # # # # # #
INITIAL VALUE 837.00 198.	MAXIFUM Storage AC-FT	216. 219. 218.	1NITIAL VALUE 837-00 198.	MAXIMUP STORAGE AC-FT	233. 271. 338.	PLAN 1	MAXIMUM FLOW•CFS	2027.	PLAN 2	MAXIMUM FLOV.CFS	114. 362. 642.	PLAN 1	PAXIMUM FLOW•CFS	1964.
INITIAL	RAXIMUM DEPTH OVER DAM	.02	BUTTIAL	HAXINUM DEPTH OVER DAM	10.31	:	RATIO	. 10 10 10 10 10 10 10 10 10 10 10 10 10 1	•	RATIO		L	RATIO	.10
ELEVATION STORAGE DUTFLOW	MAXIMUM RESERVOIR V.S.ELEV	837.42 837.50 837.48	ELEVATION Storage Outflow	MAXIMUM RESERVOIR V.S.ELEV	837.91 838.71 839.22									
	RATIO OF PMT	. 10 . 25 . 50		R A T 10 OF PRF										
PLAR 1			PLAN											

(ANGOTOPING)		TIME HOURS	17.33 17.00 17.17	(BREACH)	11PE HCURS	16.50 14.83 13.83	(OVERTOPPING)	J J ME Hours	17.83 17.50 17.67
	SIATION	MAXIMUP STAGE,FT	828.5 829.7 830.6	STATION 3	MAXIMUN STAGE.FT	761.4 761.4 761.4	STATION 3	MAXIMUP STAGE. FT	760.0 760.3 760.6
	rran .	MAXINUM FLOV+CFS	113. 362. 647.	AN THE	MAXIMUM FLOV.CFS	1646. 1672. 1730.	PLAN 2	MAXIPUM FLOUICES	112. 353. 637.
7	1	RATIO	.10	PLAN	RATIO	.10 .25	1	PAT 10	.10

APPENDIX 4

REFERENCES

JOHNSON LAKE DAM

- Chow, Ven Te, <u>Open Channel Hydraulics</u>, McGraw Hill Book Company, New York, 1959.
- 2. King, H.W. and E.F. Brater, Handbook of Hydraulics, McGraw-Hill Book Company, New York, Fifth Edition 1963.
- 3. Schwab, G.O., R.K. Frevert, T.W. Edmister, and K.K. Barnes, Soil and Water Conservation Engineering, The Ferguson Foundation Agricultural Engineering Series, John Wiley and Sons, Inc., New York, 1966, 683 pp.
- 4. U.S. Army Corps of Engineers, Hydrologic Engineering Center, Flood Hydrograph Package (Hec-1) for Dam Safety Inspections Users Manual, Davis, California, September 1978.
- United States Department of Interior, Bureau of Reclamation, Design of Small Dams, U.S. Government Printing Office, Washington, 1977, 816 pp.
- 6. U.S. Department of Interior, Geological Survey, 7.5-Minute Series (topographic) maps, scale 1:24000, Contour Interval 20 feet: Stanhope, N.J., (1954).
- 7. U.S. Department of Agriculture, Soil Conservation Service, Urban Hydrology for Small Watersheds, Technical Release NO. 55, Washington, 1975, 3.7 pp.
- 8. U.S. Department of Commerce, Weather Bureau, "Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1000 square Miles and Durations of 6, 12, 24, and 48 hours," Hydrometeorological Report NO. 33, Washington, 1977, 816 pp.
- 9. U.S. Army Corps of Engineers, Hydrologic Engineering center, "Flood Hydrograph Package (Hec-1) for Dam Safety Inspections Users Manual," Davis, California, September 1978.

END